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Abstract. The PP-TSVD algorithm is a regularization algorithm based
on the truncated singular value decomposition (TSVD) that computes
piecewise polynomial (PP) solutions without any a priori information
about the locations of the break points. Here we describe an extension
of this algorithm designed for two-dimensional inverse problems based
on a Kronecker-product formulation. The 2-D version of the PP-TSVD
algorithm is formulated such that it is suited for large-scale problems.
We illustrate its use in connection with deblurring of digital images with
sharp edges.

1 Introduction

In this work we focus on discretizations of linear inverse problems in the form of
square systems Az = b or overdetermined least squares systems min||A z — b||2.
These systems, which we denote discrete ill-posed problems, represent a wealth
of applications of inverse problems; see, e.g., [6, §1.2].

Our main “tool” from linear algebra for analysis as well as computations is
the singular value decomposition (SVD) of the coefficient matrix A. If we assume
that A is m x n with m > n, then the SVD takes the form

A:Zum’i UZ-T, (0
i=1

where u; and v; are the left and right singular vectors which are orthonormal, and
o; are the singular values which are nonnegative and appearing in non-decreasing
order. In terms of the SVD, discrete ill-posed problems are characterized by
having a coefficient matrix A whose singular values decay gradually to zero (in
practice: until they hit a level determined by the machine precision).

Standard methods for regularization of discrete ill-posed problems are Tik-
honov reqularization

min {||A z — bl + A*[[2]|2} (2)
and truncated SVD (TSVD)

min ||z|]|z  subject to ||Ag z — b||2 = min, (3)



where Ay is the TSVD matrix of rank k& given by

k
Ak:ZUiUiUZT~ (4)
i=1

It is well know that the Tikhonov and TSVD solutions are smooth, in the sense
that they are continuous and tend to represent minimum energy. By replacing the
norm ||z||2 in the above equations with the seminorm ||L, z||2, where the matrix
L, is a discrete approximation to the pth derivative operator, we can produce
solutions with, say, maximum flatness (for p = 1) or minimum roughness (for
p = 2) —but the solutions remain continuous and smooth.

While smooth solutions are desirable in many applications, they are undesir-
able in other applications where the solutions are known to have discontinuities
or steep gradients. Hence, other regularization algorithms must be used to com-
pute such regularized solutions. One approach is to replace the 2-norm ||z]|2 in
Tikhonov’s method with the norm ||L; z||1, i.e., the 1-norm of the first spatial
derivative of the solution. This is called total variation (TV) regularization, and
it is able to produce solutions with very steep gradients; see [14] for details. Due
to the non-differentiability of the 1-norm, specialized optimization algorithms
[15] must be used to compute the TV solutions.

A different approach, which is a modification of the TSVD method and which
is based solely on tools from linear algebra, was proposed in [8] and [9]. The key
idea is to replace the 2-norm ||z||2 in the TSVD method with the seminorm
||Lp 2||1, where L, is again an approximation to the pth derivative operator:

min||L, z||1 subject to ||Az z — b||» = min. (5)

The change to the 1-norm has a dramatic effect on the computed solutions. As
proved in [9], the solutions to (5) consist of polynomial pieces, and the degree of
the polynomials is p — 1. Moreover, the number of break points is at most &£ — p,
where k is the TSVD truncation factor in (4). The method is called the PP-
TSVD method, and it has been used, e.g., in helioseismology [3] and inversion of
gravity and magnetic data [11].

The original PP-TSVD algorithm was specifically developed for 1-D prob-
lems, and the extension to 2-D problems may not be obvious. The purpose of this
work is to describe how the PP-TSVD is extended to treat 2-D inverse problems.
Along this line, we also discuss important implementation details necessary to
make the 2-D version useful for problems of realistic size. First we discuss some
general issues in the treatment of discretizations of 2-D inverse problems in §2.
Then we describe various discrete techniques for computing the 1-norm of the
derivatives of the solution in §3. Next, in §§4-5 we describe the PP-TSVD algo-
rithm and its implementation for large-scale problems. Various properties of 1-D
and 2-D PP-TSVD solutions are discussed in §6, and finally we present some
small image reconstructions in §7.



2 Discretization of 2-D Problems

In order to simplify our presentation, we limit our discussion to 2-D decon-
volution problems whose variables separate, i.e., we work with a 2-D first-kind
Fredholm integral equation of the generic form

/0 /0 Kz —2")wly —y) f&',y) de’ dy = g(z,y), (6)

where k and w are functions. An example of such a problem is image deblurring
with a Gaussian point spread function, for which

(1) = wlt) = <= exp (—% (g)) |

and which is used as a model for out-of-focus blur as well as atmospheric turbu-
lence blur [1].

Assume now, also for ease of presentation, that we use the midpoint quadra-
ture rule to discretize the integral equation. Thus, we approximate the integral
over y' with a sum of n terms,

1 n .
/0 wy—y) f@ ) dy ™D wly — ) f@u) = 62, y),
i=1

where y, are the quadrature points and f represents the approximate solution
that we compute. Next, we approximate the integral over z’ with another sum,

1 n
/0 k(z—2') o2, y)de’ ~n~! Zn(m —z3) ¢(x),y) = ¥(z,y),

i=1

where zj, are also quadrature points. Finally, we use collocation in the n? points
(zi,y5),
w(xlay]):g(m“y])a i:jzla"'an7

which eventually will lead to a system of n? linear equations in the n? un-
knowns f(z;,y;).
To derive this system we introduce the following four n x n matrices A, A,

F and G with elements

Ay =n"lh(ei —at),  Aje=n"lw(y; — b))

Fkﬁ:f(x;wyz): Gij:g(l’i,yj),

where all indices are in the range 1, ..., n. Note that A and A consist of samples
of the functions x and w, respectively, while F' and G consist of samples of the
approximate solution f and the right-hand side g, respectively.



We now define an n x n matrix ¢ that corresponds to the y/-integration, with
elements

@kj:(b(xk’y] IZ _yZ xk,y,g) jak:11"~7n

and by carefully studying the indices of the above expression it follows that @
can be written as B

®="FAT.
Similarly, we define an n x n matrix ¥ that corresponds to the z’-integration,
with elements

n

kpl'j = w(mi,yj) = n_l ZI{(IZ' — ,‘L’;ﬁ) ¢(m;€,yj), Z',k = 1, Lo n,
k=1

and this matrix can be written as
=Ad=AFA".

Collocation now corresponds to the requirement ¥ = (G. We have thus shown
that the discretization of the 2-D deconvolution problem leads to the linear
relation A FAT = G between the discrete solution F and the discrete data G.

Finally, to arrive at a standard system of linear equations, we introduce the
Kronecker product and the “vec” notation. The Kronecker product A® A of two
n x n matrices A and A is defined as the n? x n? matrix

ﬁllA algA e élnA
an A asA - as, A
AR A=

n1A AnaA - GpnA

If X is an n x n matrix with column partitioning X = (z1,...,2,), then we
define the vector vec(X) of length n? as

vec(X) =
T

The Kronecker product and the “vec” notation are connected via the following
important relation

(A ® A) vec(X) = vec (AXAT) . (7)

Thus we see that the discretized linear system that we derived above can be
written in the following two alternative forms

AF AT = G — (A ® A) vec(F) = vec(G). (8)

The rightmost form is a conventional system of linear algebraic equations with
an n? x n? structured coefficient matrix. It is by applying the original PP-TSVD
algorithm to this problem that we shall derive the 2-D version of the algorithm.



3 Derivative Operators

In this section we derive some useful expressions for discretizations of derivative
operators. We start with 1-D problems and a function f = f(z) given in the
interval [0, 1]. Moreover, we assume that the n-vector z consists of equidistant
samples of the function f, e.g., z; = f(ih), 1 = 1,...,n, where h = 1/n is
the grid spacing. Then approximations to discretizations of the first and second
derivative f' and f are given by h™ 'L,z and h™2L,z, respectively, where the
two matrices Ly, and L, are given by

-1 1 1-21

L= o) La= ST (9)

11 1 =21

and where L is (n— 1) X n and Ly is (n — 2) x n. These definitions of L; and Ls

ensure that the two matrices have nontrivial null spaces whose basis vectors are

exact discretizations of the functions that span the null spaces of the derivative
operators:

1 1 1

Then 1t follows that a numerical approximation to the 1-norm of f can be com-
puted as

1
||f||1=/0 1F(2)]d = hll2|l

while numerical approximations to the 1-norm of the derivatives f’ and f" are
given by
£ = ezl 7N = A [ Loz

For 2-D problems, we assume that the matrix F' consists of samples of an
underlying function f = f(z,y) in the domain [0, 1] x [0, 1], sampled on a regular
n x n mesh with grid spacing h = 1/n in both directions. Using the matrices L
and Ly defined in (9) we then obtain the following numerical approximation to
the 1-norm of f:

1 1 n n
||f||1:/0 /0 |f(:r,y)|dmdy:h222|fij|:h2||vec(F)||1

i=1 j=1

while numerical approximations to the 1-norms of the first and second partial
derivatives are given by
af T
TN = hivee(F LTl = Bl(E: © Dvee(F)],
1




0
' %H ~ hl||vec(L1 F)||1 = h||(I & Ly)vec(F)||1
1
*f T
5| = llvec(F Ly )|l = [[(L2 @ I)vec(F)]x
0x?|,
32
{ =~ [[vec(Ls F)|[1 = ||[( ® La)vec(F)]|x
ay? |,
PLN  fvee(Ea FED = (22 © EaJvec(F)]|
3,7363/ 1_ vec 1 1)1 = 1 1)vec -

Here and throughout the manuscript, I denotes the n x n identity matrix. An-
other useful result concerns the sum of 1-norms:

Had = G

8_,
22] |52 o] )

These relations follow immediately from the definition of the vector 1-norm.
The matrices L; and Ls can also be used to compute other quantities that

&E (10)

1

involve derivatives. For example, to approximate V2f = M —|— 2 we can first
compute approximations Ly F' and F L to the second partial derlvatives. How-
ever, we cannot immediately add these two matrices because their dimensions
are incompatible (they are (n—2) x n and n x (n—2), respectively). One solution
is to “peel off” the first and last columns of Ly F' and the first and last rows of
F LT, and then add the two (n — 2) x (n — 2) matrices.!

Another useful quantity that we can approximate is the total variation (TV)

of f, defined as
1 1 a 2 a 2 1/2
Jrv(f) :/0 /0 <<3—£) + <%) ) dz dy. (12)

The quantity ((3f/81:)2 + (3f/8y)2) i is known as the gradient magnitude in
the image processing literature [13, §4.3.2]. The TV functional gives information
about the discontinuities in the image. For example, if f takes on a constant value
in a region {2 and takes on another constant value on the complementary of {2y,
then Jpv(f) is the length of the boundary of §2o multiplied by the magnitude
of the jump [14]. Various aspects of the TV function and TV regularization are
discussed in [4] and [14]. To approximate Jyy (f), define the (n — 1) x n matrix

11
1 L] 1
11
! The resulting matrix is identical, except for a scaling factor, to the inner points in
the matrix computed by means of Matlab’s del2 function.



and the two (n — 1) x (n — 1) matrices
A, =MFILT, Ay=LFMT.

Then we have found experimentally that a reasonable numerical approximation
to the TV of f is given by

) =305 (405 + (4)5)

i=1j=1
We note that some authors choose to approximate Jrv(f) by
11
Fou(f) = of| ,|9f _||or) |er
JTV(f)_/o /0 (53: +‘3y‘>dmdy_ oz, By, 19)

which is linear in the two derivatives and which, in turn, is approximated nu-
merically by the quantity in Eq. (10).

4 2-D PP-TSVD Regularization Algorithms

Having realized that discretized 2-D problems have the same general structure
as 1-D problems, cf. (8), it is obvious that we can derive 2-D versions of all the
1-D regularization algorithms simply by replacing the coefficient matrix with
the Kronecker product A® A, the right-hand side with vec(G), and the solution
with vec(F'). Moreover, in the constraints, we replace the solution’s seminorm
with one of the functionals defined in the previous section. Of particular interest
here are the functionals that can be written in terms of a matrix times vec(F).
This excludes the TV function, but not the approximation in (10).
Thus, we define the 2-D version of the PP-TSVD method as follows:

min || £ vec(F)||, subject to || Ag vec(F) — vec(G)||2 = min, (14)

where the matrix Ay, is the truncated SVD of the Kronecker product A® A, and
the matrix £ is one of the matrices

Ly®l o
Iol, <1®Lp>’ p=1,2,.... (15)

To obtain more insight into the 2-D PP-TSVD method, we use the fact that the
SVD of the Kronecker product A& A can be conveniently expressed in terms of
the SVDs of the two matrices. Assume that the SVDs of A and A are given by

n

AZUEVT:ZUZ'O'Z'UZ-T, A:UEVT:EEZ'EZ'EZT.
i=1

i=1

Then it follows from the properties of Kronecker products that

AA=(ToU) (Tes) Vov)

= Z Z (@ ©w) (T 03) (Tow), (16)

i=1i=1



which, except for the ordering, constitutes the SVD of A® A. Hence, the matrix
Aj is given by

A=) (@ow) (@) Tov),
(i.5)ex
where K denotes the set of indices (i, j) corresponding to the largest k values of
T;0j.
We can also use expression (16) to define a slightly different 2-D PP-TSVD
method, namely, by replacing Ag with the matrix

£ e
A= ZZ (W ®v;) (Tioj) (T ® Uj)T = Ay ® Ay,
i=1j=1
obtained by including the largest ¢ singular values of A and A. Using the relation
|[vec(F)||2 = || F|lr, this variation of the PP-TSVD method takes the form
min||L vec(F)||; subject to || Ae F AT — G|l = min. (17)
Both versions of the 2-D PP-TSVD method yield regularized solutions; they

differ in the way that they select which SVD components to be included in the
solution.

5 Large-Scale Implementation

The original 1-D version of the PP-TSVD algorithm was based on the fact that
the PP-TSVD solution zz ; can be written as

b uTh
ZLk = %k — Vkowka 2k = Z - v, (18)

i=1 ?

where zy is the TSVD solution, i.e. the solution to (3). Moreover, the matrix
V2 = (Vg41,...,vn) consists of the last n — k right singular vectors, and the
vector wy, 18 the solution to the linear ¢;-problem

min |[[(LV2)w — L zg]|1. (19)

This algorithm thus requires two main computations: the full SVD of the matrix
A and the solution to the unconstrained £;-problem. Note that this formulation
gives insight into the PP-TSVD solution: its first £ SVD components are identical
to the TSVD components while its last n — & SVD components, which lie in the
null space of Ay, are chosen so as to minimize the 1-norm of the vector L z.
Although convenient for small- and medium-size problems, the original al-
gorithm is not suited for large-scale problems where it is inconvenient, or im-
possible, to compute the full SVD —even if the Kronecker product formulation



is used. Large-scale SVD algorithms, such as those based on Lanczos bidiago-
nalization, compute only (approximations to) the principal SVD components.
Thus, we need an algorithm that avoids the explicit use of the matrix V,°.

The solution to this problem is to replace the unconstrained £;-problem with
a related linearly constrained f¢i-problem. Let Vi = (v1,...,vg) consist of the
first & right singular vectors, and rewrite the PP-TSVD solution as

2Lk = 2k — Yk, (20)

where y, = V,’wy and therefore lies in the range of V}?. Hence ¥ is orthogonal
to the range of Vj, and it follows that y; can be computed as the solution to the
linearly constrained #;-problem

min||[Ly — L zg||x subject to VIy=0. (21)

We have implemented this approach in Matlab in the function pptsvd, which is
available via the home page? for the REGULARIZATION TooLs package [5]. The
principal SVD components are computed by means of the built-in Matlab func-
tion svds (which uses Lanczos bidiagonalization with implicit restarts), and to
solve the linearly constrained ¢;-problem we implemented the classical algorithm
by Barrodale and Roberts [2].

In a future project, we wish to explore the possibilities for using the Lanczos
vectors of the bidiagonalization process without transforming them into approx-
imate SVD vectors. Specifically, assume that the mth iteration of the Lanczos
bidiagonalization process provides the three matrices U™ B(™) and V(™) such
that

AV = ym) gm)

where U(™) and V(™) have orthonormal columns and B("™) is bidiagonal. Then
the iterative LSQR algorithm [12], which is based on Lanczos bidiagonalization,
computes a solution which is formally given by

sy (B<m))T (U<m>)T b,

and which can be considered as a (rough) approximation to a TSVD solution
2z, for some k [6, §6.4]. Moreover, for the same k the columns of V(™) span
an approximation to the subspace spanned by the first k£ right singular vectors
v, . ...v;. Hence, it is worth exploring the possibility of replacing z; and Vi in
(20) and (21) with Z,, and ym),

It 1s also worth exploring the possibilities for using more recent and faster
algorithms for solving the constrained ¢;-problem in (21), as well as exploring
whether information from previous values of k£ can be used to warm-start the
algorithm when the solution for a new k-value is computed.

2 The URL is http://www. imm.dtu.dk/~pch/Regutools/regutools.html.
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6 Properties of the 2-D PP-TSVD Solutions

For 1-D problems it is easy to quantify the appearance of the PP-TSVD solutions
2Lk, see [9, §2.2] for details. A key observation is that the vector L, zp  is
precisely the residual vector in the linear ¢1-problem (19), and this residual vector
will have many zero elements. The maximum number of nonzero elements equals
the difference between the row and column dimensions of the coefficient matrix
in (19). Hence, if the (n — p) X n matrix L, is an approximation to the pthe
derivative operator and if & > p, then L, zr ; will have at most k& — p nonzero
elements. And since zg ; can be considered as samples of the pth integral of the
function represented by L, zr , it follows that zg ;. itself represents a piecewise
polynomial of degree p — 1 with at most k& — p break points. If & < p then the
{1-problem is underdetermined and zy,  is identical to the MTSVD solution [10]
which is known to be continuous and smooth.

Consider now the 2-D problems and assume that £ is one of the matrices
in Eq. (15) with L, being an approximation to the pth derivative operator.
Then the coefficient matrix £V,? in (19) is either n? x (n? — k) for p = 0, or
2n(n — p) x (n? — k) for p > 0, ensuring that the ¢;-problem is overdetermined,
and the number of nonzero entries in the residual vector £ z¢ ; corresponding to
the PP-TSVD solution z, j is at most k for p = 0, and at most n(n — 2p) +k for
p > 0. Our experience is that the number of nonzeros in the ¢;-residual vector
is much smaller.

F It Fl

IL,Fl

Fig.1. A skew edge gives a higher value of ||£ vec(F)||: than a vertical (or horizontal)

edge.
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In order to illustrate this, consider the case p = 1 and £ given by

(Lol o
e=(15)) -

which leads to regularized solutions that minimize the approzimate TV func-
tional Jrv (F), cf. (10) and (13). Clearly, horizontal or vertical edges in F' lead
to smaller values of

1 vec(F)s = [Ivee(Ls F)lls + lIvec(F LTy
than skew edges; for example, if
F = triu(ones(n))
then ||vec(Ly F)||1 = ||vec(F LT)|| = n — 1, while if
F = [zeros(n, n/2), ones(n, n/2)]

then |[vec(Ly F)|[1 = 0 and |[vec(F LT)||; = n; see Fig. 1. Hence, ||£ vec(F)||:
will be made small by constructing F' as a blocky image consisting of horizontal
or vertical rectangles with the same intensity —and such images are precisely
the ones that are produced by the 2-D PP-TSVD algorithm with regularization
term ||£ vec(F)||1. And since ||£ vec(F)||; can be considered as an approximation
to the TV of the image, we see that with this regularization term the PP-TSVD
produces regularized solutions which are related to the TV regularized images
(which are also found to be blocky, cf. [4]).

To take the illustration further, consider an 8 x 8 image F' consisting of a
white 3 x 4 rectangle on a black background, with ||£ vec(F)||; = 14. Now add
Gaussian blurring to F' and compute regularized images Fj by means of the 2-D
PP-TSVD algorithm with & = 1,...,16. These 16 solutions are shown in Fig. 2
along with the corresponding values of ||£ vec(Fy)||1. We see that as k increases,
the image becomes more complex and ||£ vec(F)||; increases until the original
image F' is recovered for k = 16. We stress that no noise was added in this
experiment — the purpose is solely to illustrate the reconstruction capabilities
of the 2-D PP-TSVD algorithms with £ given by (22).

It is interesting to inspect the 2-D PP-TSVD solutions more closely for var-
ious values of p, in order to understand how “piecewise polynomial” should be
interpreted in two dimensions. Figure 3 shows surface plots of four 16 x 16 reg-
ularized solutions F' corresponding to the four choices of £ listed in Table 1. We
see that for £ equal to the n? x n? identity matrix, the regularized solution F
consists of delta functions, and for £ = L; ® L;, 1 = 1,2, 3 each row or column
of F' is a piecewise polynomial of degree i — 1.
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2.7756e-015 1.9978 4.0596 4.0596

ﬁ
F
F

11.2066 12.4352 12.9487 13.1704

L
"

13.7244 13.7244 13.7244 13.7244

13.7244 13.7244 13.7244

Fig.2. PP-TSVD reconstructions Fy for k = 1,...,16. The numbers on top of each
image are the corresponding values of ||£ vec(F%)||1 with £ given by (22).

Matrix £ Characterization of solutions

Il Delta functions

Lol Piecewise constant functions
1® 14

<L2 ® I) Piecewise linear functions
I'® L

L1 . . . .
<I ® L3> Piecewise quadratic functions

Table 1. The four choices of L used to illustrate 2-D PP-TSVD solutions.
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Fig. 3. Regularized solutions for the four choices of £ in Table 1.
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7 Image Reconstructions

We conclude with a few illustrations of the reconstruction capabilities of the
2-D PP-TSVD algorithm. Our test problem is the image deblurring problem
blur included in Version 3 of REGULARIZATION TooLs [7], and the image size is
16 x 16 (which is similar to the test problem used in [6, §7.7.2].

59.1152 110.489 124.2953

131.3343 147.1492 159.0826

171.9027 188.9569 208

Fig.4. Reconstructed 16 x 16 images Fi in the noise-free test problem for k& =
10,20, ..., 90, along with the quantities ||£ vec(F%)]||1. Perfect reconstruction is achieved
for k& = 90.

First we use a noise-free test problem to demonstrate that the 2-D PP-
TSVD algorithm is indeed capable of reconstructing images with sharp edges —
in contrast to the classical regularization algorithms that produce smooth so-
lutions. Figure 4 shows PP-TSVD reconstructions for £ given by (22) and for
k=10,20,...,90. We see that ||£ vec(F)||1 increases monotonically with & until
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we achieve perfect reconstruction for £ = 90. All the reconstructions are blocky
and the number of image blocks increases with k.

PP-TSVD, k=110 TSVD, k=180

TE& fﬁ

Fig.5. The optimal PP-TSVD and TSVD solutions to A F’ AT = G + E with additive

Gaussian noise E and blurred signal-to-noise ratio ||G||r /| E|r = 10.

We now add Gaussian noise F to the blurred image G, and we choose a
noise level such that the blurred signal-to-noise ratio is ||G||r/||E|lr = 10. Fig-
ure 5 shows the “optimal” PP-TSVD solution Fj (i.e., the one that minimizes
|| FeXact _ Fy||lp), which is achieved for k = 110, along with the optimal TSVD
solution achieved for k& = 180. Clearly, the PP-TSVD algorithm is much better
at reconstructing the sharp edges in the image than the TSVD algorithm.

The choice of the regularization parameter k is a complicated matter that
lies outside the scope of this work.
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