
Two-Grid Iterative Methods for Ill-Posed
Problems

Michael Jacobsen

September 4, 2000



ii



Preface

This report was written at Department of Mathematical Modelling (IMM) at
the at the Technical University of Denmark (DTU). It is the result of an exam
project and amounts to 35 ects points out of 300 required as a part of obtaining
the Masters Degree in Engineering at DTU.

The work has been done under supervision of professor Per Christian Hansen
whom I’ll thank for his support and many suggestions during the making of
this thesis.

Michael Jacobsen, c958319
Kgs. Lyngby, September 4, 2000.



iv



Abstract

Two-grid methods for regularized inverse problems, proposed by Hanke and
Vogel [Numerische Matematik, 83:385–402, 1999], are investigated. The deriva-
tion of the methods are treated in detail and the algorithms are tested exten-
sively. An important quantity is a subspace splitting and appropriate subspace
splittings is discussed. The algorithms are applied to both small problems in
order to investigate the impact on, e.g. the condition number and to large
problems in order to see the results for some real world problems.

Keywords: conjugate gradients, preconditioning, ill-posed problem, ill-
conditioned, regularization, two-grid.

Resumé

To-nivau metoder til regulariserede inverse problemer, som foreslået af Hanke
og Vogel [Numerische Matematik, 83:385–402, 1999], er undersøgt. Udlednin-
gen af metoderne er gennemgået i detaljer, og algoritmerne er testet grundigt.
I algoritmerne indgår en underrumsopdeling, og flere anvendelige opdelinger
er undersøgt. Algoritmerne er anvendt i forbindelse med løsning af både små
og store problemer for både at få overskuelige resultater i forbindelse med for
eksempel konditionstallet og for at se resultater for realistiske problemer.



vi

Notation

The notational rules used in this thesis are described below and a summary is
found in Table 1 along with other reserved symbols.

Matrices are represented with bold capital letters, e.g.,
�

and � . A column
of a matrix is written with a lower case bold letter with an index, e.g., the�
th column of

�
is ��� . The Matlab notation

���	� 

is used to denote the matrix

formed by the first � columns of
�

. A specific element of a matrix is written
with non-bold lower case character, e.g., ���� denotes the element on the

�
th row�

th column. If the matrix is diagonal only one index is used. As a guideline, an
upper case italic non-bold characters denotes an operator in some continuous
case.

A vector is represented with a bold lower case letter, e.g., � . A specific
element of a vector is written with a non bold letter with index, i.e., the

�
th

element of � is � � . A subvector corresponding to some block decomposition is
written � � .

If a scalar, vector or matrix changes during some kind of iteration and the
iteration number is of importance the iteration number appears within paren-
theses, e.g. ��� ��� .

A subspace is represented using capital “caligraphic” characters like � and�
. In the same manner the null space and the range of a matrix is denoted��� ���

and � � � � respectively.

Symbol Meaning Ref. Page!
Discretized kernel matrix ( "$#�% )&
Discretized regularization matrix ('(#�% )�
Normal equation coefficient matrix�*) !(+,!.-0/1&2+3&

, ( %4#�% )5
Normal equation coefficient matrix5 ) &2+1&

( %6# % )7
Preconditioning matrix ( %6#�% )8:9
Identity matrix ( %4#�% );=<?> 9
Matrix with zeros elements ( "$#�% )@ � �4A	B3A � �
Krylov space (3.1) 13! � �CA	B3A � �
Krylov matrix (3.2) 13D
Left singular matrix (2.7) 8E
Diagonal matrix of singular values (2.7) 8F � The

�
th singular value (2.7) 8G

Right singular matrix (2.7) 8���IH �
The null-space of

H� �IH � The range of
HJ:K2J:L

The 2-norm ( M K + K )J:K2J:N
The

�
-norm ( M K + � K ) (3.12) 18OQPSR�T � � � The condition number (

J � JSJ � J
)



vii

Symbol Meaning Ref. PageU Kronecker product (5.3) 62V ��� Kronecker delta (2.6) 7/
Tikhonov regularization parameter 6W
An eigenvalue�XH A H �
Inner product (2.5) 7� Y
The pseudo inverse (2.8) 8ZS[ O �IH � Columnwise stacking of columnsT\^]`_ �XH � Diagonal matrix constructed from

H� 
 Coarse subspace ( � -dimensional) 27� 

The (

&a+b&
-orthogonal) complementary sub-

space to � 
 ( %�cd� -dimensional)
27e

Matrix with columns spanning � 
 ( %f#(� ) 4.2.1 27g
Matrix with columns spanning

�h

( %f#�%�cd� ) 4.2.1 27ikj Operator norm in restricted subspace � 
 (4.70) 47ikl Operator norm in restricted subspace
�m


(4.71) 47
Table 1: Symbols and notation



viii



Contents

Notation vi

1 Introduction 1
1.1 Ill-Posed and Inverse Problems . . . . . . . . . . . . . . . . . . . 1
1.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Ill-Posed Problems and Regularization 5
2.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Regularization of Discrete Problems . . . . . . . . . . . . 6
2.2 The Singular Values and Vectors . . . . . . . . . . . . . . . . . . 7

2.2.1 Filter Factors . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Perturbations and the SVD . . . . . . . . . . . . . . . . . 9

3 Conjugate Gradients 13
3.1 The Basics of Conjugate Gradients . . . . . . . . . . . . . . . . . 13

3.1.1 Conjugate Gradients . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Solving Non-SPD Equation Systems . . . . . . . . . . . . 17

3.2 Convergence Properties of CG . . . . . . . . . . . . . . . . . . . . 18
3.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Well known preconditioners . . . . . . . . . . . . . . . . 23

4 Ill-Posed Problems and Conjugate Gradients 25
4.1 Regularization and Conjugate Gradients . . . . . . . . . . . . . . 25
4.2 Two-Grid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 A Two-Grid Splitting . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Jacobi Preconditioning . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Symmetric Gauss-Seidel Preconditioning . . . . . . . . . 32
4.2.4 Schur Complement Conjugate Gradients . . . . . . . . . 34

4.3 Two-Grid Methods part II, Semidefinite
&n+1&

. . . . . . . . . . . 37
4.4 A Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Computational Costs . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Convergence Properties . . . . . . . . . . . . . . . . . . . 47
4.4.3 Schur Complement Condition Number . . . . . . . . . . 52



x

4.4.4 Symmetric Gauss-Seidel Condition Number . . . . . . . 54
4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Subspaces 57
5.1 A Good Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Cosine and Sine . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Chebyshev Polynomials . . . . . . . . . . . . . . . . . . . 58
5.1.3 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.4 Lanczos Vectors . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.5 Simulated Singular Vectors (regutm) . . . . . . . . . . . . 61

5.2 Two Dimensional Deconvolution . . . . . . . . . . . . . . . . . . 61

6 Numerical Experiments 65
6.1 The Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Initial Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Condition Numbers . . . . . . . . . . . . . . . . . . . . . 70
6.3 Eigenvalue Distribution . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 The Regularization Parameter

/
. . . . . . . . . . . . . . . . . . . 74

6.6 Filter Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 Subspace Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.8 Counting Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.9 Variations of the Algorithms . . . . . . . . . . . . . . . . . . . . . 83

6.9.1 The Kronecker Variation . . . . . . . . . . . . . . . . . . . 84
6.9.2 Schur CG with Wavelets . . . . . . . . . . . . . . . . . . . 84
6.9.3 Non-Regularized Problems . . . . . . . . . . . . . . . . . 85

6.10 The Large Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.10.1 Geophysical Migration . . . . . . . . . . . . . . . . . . . . 86
6.10.2 Inversion of Geomagnetic Data . . . . . . . . . . . . . . . 87

7 Conclusion 91

A Matlab Code 93
A.1 Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1.1 Schur Complement CG . . . . . . . . . . . . . . . . . . . 93
A.1.2 The Preconditioned Methods . . . . . . . . . . . . . . . . 94

A.2 A Short Implementation Note on
5 Y

. . . . . . . . . . . . . . . . 95
A.3 Symmetric Positive Definite

&a+1&
. . . . . . . . . . . . . . . . . . 96

A.3.1 jacobicg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.3.2 gscg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3.3 schurcg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.4 Semi Definite
&a+1&

. . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.4.1 jacobicgsemi . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.4.2 gscgsemi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.4.3 schurcgsemi . . . . . . . . . . . . . . . . . . . . . . . . . . 115



xi

A.5 Wavelet Schur complement . . . . . . . . . . . . . . . . . . . . . 118
A.5.1 schurcgwavelet . . . . . . . . . . . . . . . . . . . . . . . . 118

A.6 2-D Schur Complement . . . . . . . . . . . . . . . . . . . . . . . . 120
A.6.1 schurcg2d . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B Proofs 125
B.1 Jacobi Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 129



xii



List of Algorithms

1 Steepest Descent. Solve
� K )mo

,
�qp�r 9=sk9

and SPD. . . . . . . 14
2 Basic Conjugate Gradients (CG). Solve

� K )mo
,
�tpur 9=sk9

and
SPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Least Square Conjugate Gradients (CGLS). Solve
!4+,! K ) !(+ o

,! p�r 9=s < A %6vw" . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Preconditioned Conjugate Gradients (PCG). Solve

� K )mo
,
�4A 7 pr 9=s9

where both
�

and
7

are SPD. . . . . . . . . . . . . . . . . 23
5 Gauss-Seidel two-grid preconditioning,

K ) 7dx �y1z � , for SPD
&a+,&

.
The comments indicate the equation from which the calculation
is extracted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Schur complement CG. Solves
� K ){o

. The matrix
5 ) &n+b&

must be SPD and hence invertible. Comments show the origi-
nating equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Gauss-Seidel two-grid preconditioning, | ) 7dx �y,z � for system
with semidefinite

&2+1&
. Comments marks differences to Algo-

rithm 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Schur complement CG for semidefinite

5 ) &n+,&
. Changes

w.r.t Algorithm 6 is marked by comments. . . . . . . . . . . . . . 45



xiv



List of Tables

1 Symbols and notation . . . . . . . . . . . . . . . . . . . . . . . . . vii

4.1 Summary of matrix-vector products and solutions in each algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Estimated condition numbers for each method . . . . . . . . . . 55

6.1 Largest and smallest eigenvalues of regularized and precondi-
tioned system. 8-D subspace. . . . . . . . . . . . . . . . . . . . . 73

6.2 Largest and smallest eigenvalues of regularized and precondi-
tioned system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Condition numbers with different subspace types (heat). . . . . 81
6.4 Iteration and startup costs using the Kronecker variation . . . . 85
6.5 Iteration and startup costs for geomig. . . . . . . . . . . . . . . . 88
6.6 Iteration and startup costs for vesuvio. . . . . . . . . . . . . . . . 88



xvi



List of Figures

1.1 The structure of a problem in a graphical form, in operator form
and in the linear algebra form. . . . . . . . . . . . . . . . . . . . . 2

2.1 Picard plots for test problem deriv2 . . . . . . . . . . . . . . . . . 10
2.2 Simulated filter factors . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Illustration of semiconvergence . . . . . . . . . . . . . . . . . . . 26
4.2 3-D operator norm with restriction . . . . . . . . . . . . . . . . . 48

5.1 Daubechies wavelets with different genus . . . . . . . . . . . . . 59
5.2 Four wavelets at same scale. . . . . . . . . . . . . . . . . . . . . . 60

6.1 Profile of test problem heat . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Profile of test problem deriv2 . . . . . . . . . . . . . . . . . . . . . 67
6.3 Profile of test problem blur. . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Solution to the geophysical migration problem. . . . . . . . . . . 69
6.5 Condition number as a function of

/
. . . . . . . . . . . . . . . . 71

6.6 Condition number as function of subspace dimension (SVD and
regutm basis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Eigenvalues for regularized and preconditioned systems . . . . 73
6.8 Convergence for deriv2 with 32-D SVD basis. . . . . . . . . . . . 74
6.9 Convergence for heat with 32-D basis. . . . . . . . . . . . . . . . 75
6.10 Convergence with a non-optimal subspace splitting (deriv2). . . 75
6.11 Convergence with a non-optimal subspace splitting (heat). . . . 76
6.12 Convergence with optimal

/
. . . . . . . . . . . . . . . . . . . . . 77

6.13 Convergence with non-optimal
/

. . . . . . . . . . . . . . . . . . 77
6.14 Filter factors for deriv2 with SVD basis . . . . . . . . . . . . . . . 78
6.15 Filter factors for deriv2 with regutm basis . . . . . . . . . . . . . . 79
6.16 Convergence using different types of Wavelets and condition

number as function of subspace dimension. . . . . . . . . . . . . 80
6.17 Convergence using different subspace types . . . . . . . . . . . 82
6.18 Convergence vs. flops. . . . . . . . . . . . . . . . . . . . . . . . . 83
6.19 Convergence using the Kronecker variation . . . . . . . . . . . . 84
6.20 Convergence vs. flops with wavelets. . . . . . . . . . . . . . . . 85



xviii

6.21 Convergence using the preconditioners on the unregularized prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.22 Error plot and best solution for geomig. . . . . . . . . . . . . . . . 87
6.23 Convergence plot for vesuvio. . . . . . . . . . . . . . . . . . . . . 89

A.1 Verification of Schur complement CG algorithm . . . . . . . . . 94
A.2 Comparison of algorithms with their matrix equivalents . . . . 95



C H A P T E R 1

Introduction
The main reason for this lack of discourse seems to be that the dis-
cussion of regularization techniques in the literature (...) is usually
phrased in terms of functional analytic language, geared towards
infinite-dimensional problems. (...). This tends to make the treat-
ments unduly application specific and clutters the simplicity of the
arguments with irrelevant details and distracting notation. Neu-
maier [22].

Some problems are harder than others. This report deals with very hard prob-
lems which in a sense are unsolvable. However, as we shall see, we are able to
obtain a possible solution to the problems by using a mathematical trick called
regularization. But first we will introduce the meaning of “ill-posed problems”
and “preconditioning” which play an important role in this thesis. The follow-
ing is a short mostly non-mathematical introduction to these two concepts.

1.1 Ill-Posed and Inverse Problems

An ill-posed problem is in the linear algebra setting defined by a system of
equations that often originates from an ill-posed inverse problem with a huge
condition number. A huge condition number indicates that rounding errors or
other errors will seriously influence the result. The concept of a “problem” in
this context is illustrated in Figure 1.1. In the case of a forward problem the
input and system are given and the problem is to find the output.

The inverse problem has two variants. The most common is that the system
and output are known and one wishes to find the input. The case where the
unknown is the system is also denoted an inverse problem.

An inverse problem can also be explained using an example from the popu-
lar spare time occupation TV watching. On TV most quiz shows ask a question
and the participant must answer — a forward problem. In Jeopardy the answer
is given and the participants must “answer” with the question — an inverse
problem.



2 Introduction

Input + System Output}C~ )��! K )m�
Figure 1.1: The structure of a problem in a graphical form, in operator form and in the
linear algebra form.

Returning to a more scientific setting we have the standard example atmo-
spheric blur. In this example the system is the atmosphere which blurs the
light from the stars (the input). The output is measured by a camera and the
inverse problem is to determine what the stars really look like. A mathematical
approach of finding the solution is treated in this thesis, while the well known
Hubble Telescope takes another approach and simply removes the problem by
moving out of the atmosphere1. However a space telescope is a rather expen-
sive device and a more earth-bound approach could in many cases be cheaper.
Furthermore for many problems it is not possible to remove the problem. He-
lios seismology is a good example because it is impossible (with current tech-
nology — never say never) to travel to the sun and drill holes in it in order to
study its internal structure. So the study of inverse problems is very relevant
in some areas.

Some inverse problems are hard while others are easy to solve. It is obvi-
ous that the easy solvable problems are less interesting (we just solve them)
than the (very) hard ones, which we call ill-posed. An ill-posed problem is ill-
conditioned and neither a simple nor a complicated reformulation of the prob-
lem will improve the ill-conditioned problem significantly. An ill-conditioned
problem is on the other hand not necessarily an ill-posed problem because a
reformulation sometimes does help. In a strict mathematical setting we are not
able to solve an ill-posed problem and get the correct solution. However using
a priori knowledge we are able to get an answer that, hopefully, is close to the
correct solution. One of the tools in this category is regularization which is
used to tame the solution and keep it within reasonable limits.

We now return to the case of atmospheric blur to explain the ill-posed na-
ture of this particular problem. We have outside the atmosphere a picture of
some stars. This picture portrays point objects because of the enormous dis-
tances. These points get blurred on the way through the atmosphere, i.e., the
edges are smoothened. This picture arrives to a telescope which takes a pic-
ture with some unavoidable measurement errors (noise). The forward model
smoothened the edges so the inverse must naturally sharpen the image. How-

1A problem with the optic parts of Hubble did unfortunately create an unwanted inverse prob-
lem, which at first was dealt with using mathematics but the telescope was later equipped with
“glasses”.



1.2 Iterative Methods 3

ever, there is no way to separate measurement errors from the data and the
noise is therefore also sharpened. Noise gives sharp edges in the blurred im-
age and the inverse operation furthermore sharpens the noise. In many cases
the results is that the sharpened noise dominates the real image.

Much work on ill-posed problems has been done since the early works by
Phillips [27] and Tikhonov [33]. A more recent work is by Hansen [16] that
treats ill-posed problems in a linear algebra setting very similar to the style in
this thesis.

1.2 Iterative Methods

The word preconditioning hints that it is something you do before and it is
something you do to help the condition of the problem. Preconditioning is
mostly used to help iterative methods such as conjugate gradients.

The counterpart to iterative methods are direct methods. Direct methods
are characterized by some kind of factorization. The well known Gaussian is
nothing more than an LU factorization with forward and backward substitu-
tion. A direct method finds a solution — right or wrong — in “one” step and
normally we do not get any approximate solutions during this single step.

The downside to direct methods becomes apparent when the problems get
large. A factorization of a large matrix is generally very expensive in terms of
computing time and memory consumption.

Iterative methods are characterized by using repeated steps in order to find
the solution. At each step a new solution is generated which hopefully con-
verges to the correct solution. Furthermore one iteration is normally cheap in
terms of computing time compared to a direct method. If the iterations con-
verge fast it possible to stop after just a few iterations and still have a good
approximation to the solution.

Many iterative methods also have the advantage that the system matrix
�

itself is not important but rather its effect on a vector. Hence it is only necessary
have some function that computes the matrix-vector product (a black box).

Iterative methods make it possible to work with larger problems than the
direct methods. This fact combined with scientists’ ability to enlarge and ex-
tend any given problem to any given size we see a large interest for iterative
methods. Hence iterative methods are both treated in specialized books by, e.g.
Axelsson [1]; Smith, Bjørstad and Gropp [32]; Barret et al. [2]; and Hageman
and Young [10] but also as important parts of more general books on linear
algebra by, e.g., Golub and Van Loan [7]; Demmel [5]; and Trefethen and Bau
[34]. An example of the special combination of ill-posed problems and iterative
methods is by Hanke [11].



4 Introduction

1.3 Thesis Overview

This chapter has given the reader a brief overview of what an ill-posed prob-
lem is. The concepts and theory of ill-posed problems are further discussed in
Chapter 2 along with the mathematical tool regularization that is used to solve
these the problems.

Chapter 3 describes the iterative method named conjugate gradients. Con-
vergence is treated, which naturally leads to the concept of preconditioning.
Preconditioning is a technique to modify a problem in order to accelerate con-
vergence.

Ill-posed problems have special properties which the two-grid precondi-
tioners proposed by Hanke and Vogel [13], [12] try to exploit. Chapter 4 takes
the reader through the construction of the algorithms as well as indications on
the proper use of the methods.

An important part of the two-grid preconditioners is a division of the solu-
tion space into two subspaces. Chapter 5 gives an overview of some subspace
types suitable for use in our methods.

In order to investigate, illustrate and support the mathematical theory, Chap-
ter 6 contains tests and experiments with the algorithms. Numerical experi-
ments are performed on a small suite of test-problems of varying difficulty and
size. This chapter along with Chapters 4 and 5 form the essence of two-grid
methods and therefore also this thesis.

Finally, in Chapter 7, the results and observations are summed up and fields
for further investigations are listed.

Implementations of the algorithms are listed in the appendix along with
descriptions of input and output parameters. Documentation on the test pro-
cedures performed to verify the correctness of the algorithms with respect to
the mathematical deductions in Chapter 4 is also located in the appendix.



C H A P T E R 2

Ill-Posed Problems and
Regularization

For a long time mathematicians felt that ill-posed problems cannot
describe real phenomena and objects. However, we shall show in
the present book that the class of ill-posed problems includes many
classical mathematical problems and, most significantly, that such
problems have important applications. Tikhonov [33].

This thesis treats the problem of solving linear systems with large condition
numbers. In all introductory courses on numerical linear algebra one learns
that a large condition number means that the result should not be trusted. A
common advice is to reformulate the problem to get a better conditioned sys-
tem of equations, i.e., with a smaller condition number. However for some
problems it is not possible to do so because the underlying problem is ill-posed.

The classical example of an inverse ill-posed problem is the Fredholm inte-
gral equation of the first kind with a square integrable kernel1�� } ��� AI�I� ~ � �I�I�S�2)�� ��� ���

(2.1)

Square integrable means that the kernel
} ��� AI�I�

fulfill��� } ��� L ) ��1��� � } ��� AI�I� � L �S�X� ����� �
In a functional analysis setting equation (2.1) is written in operator form}4~ )m��A

(2.2)

where
}

is a compact Hilbert-Schmidt operator. The inverse problem — find-
ing
~

from
}

and
�

— is problematic due to
}

being compact. A compact
}

implies that the inverse
} x �

is unbounded (if it exists!). The result is that the
solution

~
might not have a continuous dependence on

�
[26, Proposition 5.9].

1An example of this type is the atmospheric blur problem.



6 Ill-Posed Problems and Regularization

This fact is mirrored in a linear system of equations
! K )��

in the sense that
the condition number is large. If the mapping

} x �
had been continuous then

a little modification in
�

would result in a bounded and controllable change
in
~

. When we discretize the integral equation we are bound to make errors
and during the solution of the discretized system we are going to add even
more errors. Furthermore

�
often originates from some kind of measurements

which seldom or more likely never are measured exact.

2.1 Regularization

Regularization is a common name for methods to bound the unbounded
} x �

.
One of the best known regularization methods is Tikhonov regularization which
minimizes a linear combination of

��� }C~ c � ��� LL and
��� � ~ ��� LL

, that is~ )m� \�R��� J }C~ c � J LL -u/ J:� ~ J LL�� A (2.3)

where
/

is a parameter which controls the degree of regularization. The oper-
ator

�
introduces a “penalty” if

~
behaves undesirable. The simple choice is to

let
�

be the identity and hereby the regularization restricts the norm of
~

. The
choice

/ )��
gives us the possibly unbounded result of

} x � �
while choosing

“
/ ) �

” yields a result result
~ p ��� � �

, i.e., in the null space of
�

. In the
special case

� )��
we get

��)��
.

Tikhonov regularization leads to three problems which all must be ad-
dressed to find the best result:� How to solve the minimization problem (2.3).� How to choose

/
. If
/

is chosen to large we restrict the solution to much
and vice versa.� How to choose

�
.

The main subject of this thesis is the first problem — how to solve the system,
while the second and third only occupy a few pages. On the subject of the
choice of

/
consult [16] and references therein. The choice of

�
depends on a

priori information on the physics of the system and solution. Therefore is the
choice is often obvious.

2.1.1 Regularization of Discrete Problems

Most regularization methods are most easily described in the case where the
problem has been discretized into a system of linear equations.

Tikhonov regularization can be moved from the continuous case to the dis-
crete case without problems. Using some kind of discretization the operators



2.2 The Singular Values and Vectors 7}
and

�
become matrices and

~
and

�
turn into vectors.� \�R� � J ! K c � J LL -0/ J & � J LL�� )�� \�R�¢¡¡¡¡

£ !M /,&¥¤ K c £ � ; ¤ ¡¡¡¡
LL A

on which the normal equations can be applied� ! + !{-u/1& + & � K ) ! + �
Before we proceed we need to introduce an indispensable tool for the solu-

tion and diagnosis of ill-posed problems; the singular value decomposition.

2.2 The Singular Values and Vectors

The singular value decomposition (SVD) is a valuable tool in the quest of solv-
ing ill-posed problems. We shall see how the SVD gives an insight into the
fundamental problems stemming from an ill-posed problem. The following
discussion is based on Chapters 1 and 2 of [16] and Chapter 1 of [19]. Once
again we start in the continuous case before we move into the discrete world.
In order to expose the concepts and ideas rather than the details we have as-
sumed

� )¦�
. The general case is more complicated but reveals nothing im-

portant in this context. In fact it is possible to transform the general problem
with

��§)��
into the “standard form” with

� )��
, see [16, Section 2.3.1].

The Continuous Case

In functional analysis we have a tool named the singular value expansion
(SVE) which is a Fourier-like expansion of the kernel} ��� AI�I�¨)ª©« ��¬ �® ��¯�� ��� �X° � � �I��A
where the functions ¯�� and

° � are called the singular functions. They must be
mutually orthogonal in the sense that� ¯ � A ¯ � �¨) � ° � A	° � �¨) V �±� A
where the inner product is the usual (assuming all functions to be real)��² A´³µ�2) �� ²1� �I�I³ � �I�X�¶��A

(2.5)

and
V ��� denotes the usual Kronecker deltaV �±� ){· � � §) �¸¹� ) � �

(2.6)



8 Ill-Posed Problems and Regularization

The Discrete Case

The SVD is to matrices what the SVE is to kernels of Fredholm integral equa-
tions. The thin SVD of a matrix

! pdr < s9 A "»º¼% is a decomposition of the
form ! ) D�E½G + ) 9« ��¬ � |1� F �¿¾ +� A (2.7)

where
D )ÁÀ | �ÂAÃ�Q�Q�QA | 9ÅÄÆp�r < s9 and

G )ÁÀ ¾ �ÂAÃ�Q�Q�QA ¾ < ÄÆp�r 9=sk9 are matrices
with orthonormal columns. The matrix

E
is a diagonal matrix with elementsF � ordered non-increasing. If " � % the SVD is found by decomposing

!4+
followed by an interchange of

D
and

G
.

Worth noticing is that the SVD is a close cousin to the eigenvalue decom-
position because

� !C+b! ��) G(E L G�+
and

� !(!(+ ��) D(E L D�+
. If a matrix

�
is

symmetric positive definite (SPD), i.e.,
K + � K v � for

~ §) ;
, we can calculate a

Cholesky decomposition
�Ç) �È� + and from the SVD of the Cholesky factor� ) DÊÉE½G + we get�¥) �Ë� + ) D ÉEÌG + G ÉEÈD + ) D ÉE L D + A

and we see that the SVD of a SPD matrix
�

is equal to an eigenvalue decompo-
sition with

W � ) F L� and possibly some sign changes in the vector pairs
� |3� A ¾Í� � .

The Pseudo Inverse

The SVD can also be used to define the pseudo inverse that extends the notion
of inverse matrices to singular and even rectangular matrices. Let

! pdr < s9
have the SVD

! ) D�E½G + )ÁÎ 9��¬ � | � F � ¾ +� . The highest index
�
, for whichF � §)»� , defines the rank of

!
denoted rank

� ! �
. Let � ) rank

� ! �
and the

pseudo inverse is then defined as! Y )mÏÑÐ´ÒQÓ ��Ô �« ��¬ � ¾ � F x �� | +� ) GÁÕ EÖx ��	� × > �	� × ; × > 9 x ×; 9 x × > × ; 9 x × > 9 x ×CØ D + � (2.8)

Notice that the inverse and pseudo inverse are equal if
!

is square and nonsin-
gular. Furthermore the pseudo inverse applied to a vector results in the least
square solution: K®Ù¶Ú ) � ! + ! � x � ! + o) � G(EÌD + D�E½G + � x � G�EÌD + o) � G(E L G + � x � G�EÌD + o) G � E Y � L G + G�EÌD + o) G�E Y D + o) ! Y on�



2.2 The Singular Values and Vectors 9

The Singular Vectors

The right singular vectors ¾b� will play an important role in this thesis. It will
be shown in a later chapter that a good knowledge of the right singular vectors
will prove valuable in constructing a good two-grid method.

The singular vectors ¾b� tend to have more zero-crossings (more oscillations)
as index increases, or in other words as F � decreases smaller. Unfortunately this
is based on experience and it is perhaps impossible to prove [16]. However, for
all problems discussed in this thesis the above mentioned property holds to
the extend that is has been possible to calculate the SVD. That is, the property
has not been verified for the larger problems.

2.2.1 Filter Factors

A solution can be characterized with respect to the SVDK ÏÑÛÝÜ )
9« ��¬ �1Þ � | +� oF � ¾Í� A (2.9)

where the coefficients Þ � are called the filter factors. Comparing (2.9) with (2.8)
we see the least square solution have Þ � ) ¸ for all

�
. If we have an arbitrary

solution the filter factors are found via

Þ � ) ¾ +� K ÏÑÛÝÜ¾ +� K Ûàß:Ð´áàâ A ¾ +� K Ûàß:Ð	áàâ §)����
We now have the tools to describe the problems of ill-posed problems as

well as the solution technique regularization.

2.2.2 Perturbations and the SVD

As already mentioned the main problem when solving an ill-posed problem is
rounding errors and inaccuracies in the vector

o
and the matrix

�
. The influ-

ence can be illustrated by Picard plots [15]. A Picard plot shows how the sin-
gular values, F � , the Fourier coefficients,

� | +� o � , and the “solution coefficients”,� | +� o¨ã F � � , vary with the index.
Figure 2.1 shows a representative example with the cases of no noise, noise

in
o

, noise in
�

and noise in both
�

and
o

. We observe that the coefficients
with index

� v ¸ � are disturbed the most while the components belonging to
the larger singular values and their vectors are relatively unharmed.

It is clear that the solution coefficients for
� v ¸ � are “of target” and should

somehow be avoided by the regularization method, while the remaining coef-
ficients should be preserved.

A conceptually very simple regularization method is the truncated SVD
(TSVD) which simply removes all information from the singular values and



10 Ill-Posed Problems and Regularization

0 10 20 30 40 50 60

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(a) No noise.

0 10 20 30 40 50 60

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(b) Noise in ä .

0 10 20 30 40 50 60

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(c) Noise in å .

0 10 20 30 40 50 60

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(d) Noise in both å and ä .

Figure 2.1: Picard plots for test problem deriv2. The added noise is normally dis-
tributed with deviation

¸ � x�æ
(indicated with a horizontal line).



2.2 The Singular Values and Vectors 11

vectors from a given index and up. Hence the filter factors of the TSVD method
are very simple Þ � ) · ¸¹�2ç �� � v�� A
where � is a regularization parameter (the truncation).

The TSVD solution might seem a bit rough. The Tikhonov regularization
filter factors Þ � ) F L�F L� -0/ A
are more smooth, see Figure 2.2, and are in that respect maybe more attrac-
tive [16]. The equation shows that components belonging to singular values
smaller than the square root of the regularization parameter, while those com-
ponents with larger singular values get through the filter unharmed. We note
that

/ )Ê�
yields Þ � ) ¸ (the least squares solution) and

/ ) �
yields Þ � )Ê�

implying
K ) ;

.

0 20 40 60 80 100 120 140
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

i

f i a
nd

 σ
i

Singular values and Tikhonov filter factors (α = 10−10)

filter factor 
singular value

Figure 2.2: Simulated Tikhonov filter factors. The horizontal dotted line shows the
value of

/
and the vertical dotted line shows the index where

/ v F L� . The filter factors
with index

� �hè¶é
are nearly one such that the corresponding solution components are

unharmed. On the other hand the filter factors with index
� v è¶é decay rapidly and

the corresponding solution components are damped.



12 Ill-Posed Problems and Regularization



C H A P T E R 3

Conjugate Gradients
The results indicate that the method is very suitable for high speed
machines. Hestenes and Stiefel in the original article on Con-
jugate Gradients (1952)[18]

This chapter deals with an important iterative method named Conjugate Gra-
dients (CG) and we leave ill-posed problems until Chapter 4. CG is a method
which in its pure form solves

� K )�o
when

�
is SPD. The CG method origi-

nates from the childhood of computers and was first presented in a paper by
Hestenes and Stiefel [18].

CG is classified as a Krylov subspace method because the iterations takes
place in the so called Krylov subspaces. A Krylov subspace is defined by a
vector

B
, a square matrix1 � , and an integer � by@ � �CA	B¨A � �2)�êIë ]`R½ì B3A	�íB3A´�í� B3AÃ�Ã�Q�QA´� 
 x � B¨îïA (3.1)

and the corresponding Krylov matrix is defined by! � �CA	B¨A � �¨)qðñB3A	�íB3A´�í� B3AÃ�Ã�Q�QA´� 
 x � B�òµ� (3.2)

Many well known methods such as GMRES and LSQR are members of the
Krylov subspace family but these are only a selection of the many others that
have been developed since 1952 with CG as source of inspiration [8].

3.1 The Basics of Conjugate Gradients

CG is often derived as a minimization algorithm of the function Þ � K �nóÅr 9Cô r :

Þ � K �2) ¸õ KÍ+ � K c o +ÍK A (3.3)

where
�

is SPD. The function has one minimum in which the gradient ö Þ � K �2)� K c o equals the zero vector. Thus a minimization of (3.3) also solves the
1In this chapter å is not necessarily ÷ùø�÷ûúËüý .



14 Conjugate Gradients

linear system
� K )�o

. Notice how the negated gradient cïö Þ � K �Ö)þo c � K
equals the residual � � K � . Before we proceed with the CG algorithm we intro-
duce the steepest descent method which is a natural step stone on the way to
an understanding of CG.

Steepest Descent

Steepest descent is a very simple iterative algorithm for minimization of (3.3).
It iteratively performs line searches along a line

K � ��� -Öÿ�� such that Þ � K � ��� -íÿ�� �
is minimized. A minimization is achieved when the directional derivative with
respect to

ÿ
is zero for the new iterant

K � ��� � � ) K � ��� -fÿ�� (this follows from the
fact that

�
is SPD)�� ÿ Þ � K � ��� � � �¨)���� � K � ��� � � � + �� ÿ K � �	� � � )
��� � K � �	� � � � + � )���� (3.4)

Equation (3.4) tells us that
ÿ

should be chosen so that
� � � K � ��� � and

�
are

orthogonal. Remember that
� � � K �2)�� K c o and we have:� � K � �	� � � c oµ� + � ) �� o c � � K � ��� -ûÿ�� �I� + � ) �� o c � K �� � � + � c ÿ � � � � + � ) ��ÿ ) � o c � K �� � � +��� + � � �

Because
�

is SPD and the search direction is non-zero we are able to computeÿ
.

Steepest descent method uses this formula, where the direction
�

in each
iteration is taken to be the negated gradient (i.e., the steepest descent direction)cïö Þ � K �¨)�o c � K ) � � K � . Hence steepest descent can be formulated as stated
in Algorithm 1. The update of the residual ��� �	� � � is achieved by taking

K � �	� � � )K � ��� -uÿ � ��� �Å� ��� pre-multiplying with c � and adding
o

.

Algorithm 1 Steepest Descent. Solve
� K )�o

,
�qp�r 9=sk9

and SPD.�Å�� � )mo c � K �� ���� �
repeatÿ � ��� )����������������	�������� � N �������K � �	� � � ) K � ��� -ûÿ � ��� �¶� ����Å� �	� � � ) �Å� ��� c ÿ � ��� ������ � - ¸
until some stop criterion



3.1 The Basics of Conjugate Gradients 15

Steepest descent is an easily understood algorithm but unfortunately it has
very bad convergence properties. Often steepest descent chooses to minimize
in the same few directions over and over again [31].

3.1.1 Conjugate Gradients

The CG method remedies the shortcomings of steepest descent by forcing the
search directions

� � ��� to be
�

-conjugate, that is
� � ��� + � � � �	� )¥� if

� §) �
(also

denoted
�

-orthogonal). Furthermore the residuals are forced to be orthog-
onal which leads to the main point of the algorithm. We are working in an% -dimensional space and therefore the algorithm is guaranteed to end because
the residual �Å� 9 � � � must be the zero vector in order to be “orthogonal” to the% previous residuals. The algorithm is listed in Algorithm 2 and the above
mentioned properties and a proofs of these are formalized in the following.

Algorithm 2 Basic Conjugate Gradients (CG). Solve
� K )�o

,
� p�r 9=s9

and
SPD.

1:
� ��� � ) �Å�� � )�o c � K �� �

2:
��� �

3: while �Å� ��� §)�� do

4:
ÿ � ��� ) �����	��� �������! ����� � N ! �����

5:
K � ��� � � ) K � ��� -uÿ � ��� � � ���

6: �Å� ��� � � ) �Å� ��� c ÿ � ��� � � � ���
7: i � �	� � � ) ������" #���� �����	"$#��������� � �����	�
8:

� � �	� � � ) �Å� �	� � � - i � ��� � � � � ���
9:

���Ç� - ¸
10: end while

Theorem 1 Assuming infinite precision Algorithm 2 satisfies: The residuals �k� ��� are
mutually orthogonal and the search directions

� � ��� are mutually
�

-orthogonal, that is�Å� ��� + �Å� �	� ) �
if
� §) � A

(3.5)� � ��� + � � � �	� ) �
if
� §) � �

(3.6)

Proof First we note that
ÿ � ��� §)Ê� and i � ��� §) � unless we have found the solu-

tion. The proof is done by induction. In the initial case we have ����� � , � �� � ) �Å�� � ,
and �Å� � � . Equation (3.5) is satisfied because�Å�� � + �Å� � � ) �Å�� � + � �¶��� � c ÿ � � � �� � �) J �Å�� � J LL c �Å�� � + �Å�� �� �� � + � � �� � �Å�� � + � � �� �) �k�

(3.7)



16 Conjugate Gradients

The first part of the induction step assumes, for some � , that the theo-
rem holds for the set of residuals ���� � AÃ�Q�Q�QA �Å� 
 � and the set of search directions� ��� � AÃ�Q�Q�ÃA � � 
 x � � . We wish to add the search direction

� � 
 � defined by Algo-
rithm 2 step 8 to this set. The first step is to find an expression of

� � 
 � using the
known residuals� � 
 � ) �Å� 
 � - i � 
 x � � � � 
 x � �) J �Å� 
 � J LLJ �Å� 
 � J LL �Å� 
 � - J �Å� 
 � J LLJ �Å� 
 x � � J LL � � 
 x � �) J �Å� 
 � J LLJ �Å� 
 � J LL �Å� 
 � - J �Å� 
 � J LLJ �Å� 
 x � � J LL Õ �Å� 
 x � � - J �Å� 
 x � � J LLJ �Å� 
 x L � J LL � � 
 x L � Ø

...) J �Å� 
 � J LL 
«�	¬ � �Å� �	�J �Å� �	� J LL � (3.8)

Assuming
�uç � we find from (3.8) and the orthogonality of the residuals�Å�� � AÃ�Q�Ã�QA �Å� 
 � that

�Å� ��� + � � 
 � ) J �Å� 
 � J LL 
«�	¬ � �¶� ��� + �Å� �	�J �Å� �	� J) J �Å� 
 � J L � (3.9)

Now let
� � � and we use step 6 of the algorithm and the previous expression

to show �Å� �	� � � + � � 
 � ) �¶� ��� + � � 
 � c ÿ � 
 � � � ��� + � � � 
 ��J �¶� 
 � J L ) J �Å� 
 � J L c ÿ � 
 � � � ��� + � � � 
 ��� + � ��� � � � 
 � ) �kA
and we see that the search direction

� � 
 � satisfies (3.6). We now have the set
of residuals �Å�� � AQ�Ã�Q�QA �Å� 
 � and the set of search directions

� �� � AÃ�Q�Ã�:A � � 
 � which
satisfy (3.5) and (3.6) respectively. The next step is to show that �k� 
 � � � also
belongs in the set of residuals satisfying (3.5).

In this case we also need a step stone to reach the goal. Consider for
� � �Íc ¸� � 
 � + � � � ��� ) � �Å� 
 � c i � 
 � � � 
 x � � � + � � � ���) �Å� 
 � � � � ��� c i � 
 � � � 
 x � � + � � � ���) �Å� 
 � � � � ��� A (3.10)



3.1 The Basics of Conjugate Gradients 17

which is used to show that the new residual is orthogonal to all previous resid-
uals with the exception of the immediate previous, that is

� � � in the following� + � ��� �Å� 
 � � � ) � + � ��� � �Å� 
 � c ÿ � 
 � � � � 
 � �) �¶� ��� + �Å� 
 � c ÿ �¶� ��� + � � � 
 �) � c ÿ � 
 � � � ��� + � � � 
 �) �k�
It now remains to show that (3.5) also holds for

� ) � — a task quite similar to
the one performed in (3.7)�Å� 
 � + �Å� 
 � � � ) �Å� 
 � + � �Å� 
 � c ÿ � 
 � � � � 
 � �) �Å� 
 � + �Å� 
 � c �Å� 
 � + �¶� 
 �� � 
 � + � � � 
 � � + � 
 � � � � 
 �) J �¶� 
 � J L c J �Å� 
 � J L � + � 
 � � � � 
 �� + � 
 � � � � 
 �) J �¶� 
 � J L c J �Å� 
 � J L �1+� 
 � � � � 
 �� + � 
 � � � � 
 �) ��A
and we can now add �Å� 
 � � � to the set of residuals. This concludes the induction
proof. %

Theorem 1 proves that CG terminates after at most % iterations because�¶� 9 � ) � . Due to this fact CG was at first viewed as a direct method. However
due to the finite precision of real world computers CG looses the mutual or-
thogonality properties and it will not yield a residual of zero after % iterations.
Because of this CG was “forgotten” until around 1970 CG was “rediscovered”
as an iterative method. It has since been in the tool box for solving linear sys-
tems of equations [8], but the exact behaviour due to finite precision is still
subject for investigation, see e.g. [9].

3.1.2 Solving Non-SPD Equation Systems

Conjugate gradients in its basic form only solves equation systems with an
SPD coefficient matrix

�
. To solve a non-symmetric or even non-square system! K )��

of equations one can use the normal equations!'&¨! K ) !'& �2�
(3.11)

If
!

has full column rank then
!(+,!

is SPD and CG can be applied without
problems.

To solve (3.11) with CG one must take care during the calculations. An ex-
ample is never to calculate the matrix

� ) !C+b!
because this leads to unnec-

essary inaccuracies. The procedure of solving the normal equations has many



18 Conjugate Gradients

variations, but experience has shown the method denoted CGLS (Algorithm 3)
to be the best choice in strong competition with the close cousin LSQR based
on Lanczos bidiagonalization [24]. An actual implementations of CGLS (and
LSQR) is available in REGULARIZATION TOOLS [17].

Algorithm 3 Least Square Conjugate Gradients (CGLS). Solve
!4+b! K ) !(+ o

,! p�r 9=s < A %6vw" .
1: �Å�� � )�o c ! K �� �
2:

� �� � ) !(+ �Å�� �
3:
��� �

4: while �Å� ��� §)�� do

5:
ÿ � ��� ) ��Ô ����������� Ô �����	���Ô ! ������� � ��Ô ! ���	�¿�

6:
K � ��� � � ) K � ��� -uÿ � ��� � � ���Ñ�

7: �Å� ��� � � ) �Å� ��� c ÿ � ��� !'� � ���
8: i � �	� � � ) ��Ô �����	"$#������ ��Ô �����	"$#��Ñ���Ô � ����� � � ��Ô � ���	� �
9:

� � �	� � � ) !(+ �¶� ��� � � � - i � ��� � � � � ���
10:

���Ç� - ¸
11: end while

One downside to the normal equations is the squaring of the condition
number, that is O:PSR=T � !C+b! �í) O:P¶R�T L � ! � (easily derived from the SVD of

!
and

!C+b!
). The downside becomes apparent when we consider the conver-

gence properties of CG — the subject of the next section.

3.2 Convergence Properties of CG

In this section we find expressions that characterize the convergence of CG
and we discover that the distribution of the eigenvalues plays an important
role for the speed of convergence. We transform the convergence problem to
the well known problem of finding approximating polynomials — a problem
with many useful results available, which then can be used in this, on first sight
different, context.

In each step CG minimizes the square of the
�

-norm of the error, that isJ �=� ��� J LN ) � + � ��� � ��� ��� (3.12)

in the
�
th dimensional shifted Krylov subspace��� ��� p ����� � - @ � �CA � A � ��� (3.13)

To establish this fact we first write ���� � as a linear combination of the search
directions �=�� � ) 9 x �«�	¬ � V � � � �	� �



3.2 Convergence Properties of CG 19

The coefficients
V � are well defined because a multiplication with

�3+� 
 � � for� )��kAÃ�Q�Ã�:A %�c ¸ yields � + � 
 � � �=�� � ) 9 x �«�	¬ � V � � + � 
 � � � � �	�) V 
(� + � 
 � � � � 
 �)V 
 ) �1+� 
 � � ����� �� + � 
 � � � � 
 � �
The error at step � is ��� 
 � ) ����� � - Î 
 x ���¬ � ÿ � ��� � � ��� and because the search direc-
tions are

�
-orthogonal we get

V 
 ) �1+� 
 � �+* �=�� � - Î 
 x ���¬ � ÿ � ��� � � ���-,� + � 
 � � � � 
 �) �1+� 
 � � ��� 
 �� + � 
 � � � � 
 � �
Using (3.9) and that �=� 
 � ) c � �¶� 
 � we finally getV 
 ) c �1+� 
 � �Å� 
 �� + � 
 � � � � 
 �) c � + � 
 � �Å� 
 �� + � 
 � � � � 
 �) c ÿ � 
 � � (3.14)

From (3.14) we get another view on CG, namely that at each iteration the
error component in the current search direction is eliminated and that it will
never reappear. The result also leads to the minimization property of

J �®� 
 � J LNJ �=� 
 � J LN ) 9 x �« �	¬Í�
9 x �« 
 ¬b� V � V 
.� + � �	� � � � 
 �) 9 x �«�	¬ � V L� � � �	� � � � �	� � (3.15)

We see that each term of this sum is associated with a search direction that has
not yet been used. All other vectors in the shifted subspace (3.13) must have
these components. Hence CG minimizes the

�
-norm of the error in each step

because it has no components besides the ones in (3.15).



20 Conjugate Gradients

The minimization property enables us to express the error in yet another
form �=� ��� ) �=�� � -0/Å� � �=�� � - �Q�Ã� -0/ � � � �=�� �) 12 82- �«�	¬ � / � � �435 �=�� � A (3.16)

where the coefficients
/ � are chosen to minimize the error

J ��� ��� J:N . The term� 8ù- Î ��	¬ � / � � � � can be viewed as a polynomial in a broad sense. Let it be
denoted 6 � �IH � , where the argument can be either a matrix or a scalar. To clarify
consider the polynomial 6 L �IH �¨) ¸ - H - ékH L , which with a scalar argument yields6 L � W�� ) ¸ - W - é W L while a matrix argument gives 7 L � � � ) ¸ - � - é � L . If
an eigenvalue pair

� WbA | � of the matrix
�

is used we get, using the previous
example, that 7 � � ��� | ) | - � | -98 �í� | ) | - W | - é W L | ) 6 � � W=� | .

We now express the initial error ����� � as a linear combination of
�

’s normal-
ized eigenvectors | �ÂAQ�Ã�Q�QA | 9 ����� � ) 9«�	¬ �;: �Ã|Í� A
and in the same manner it is possible to write the

�
th error with the coefficients: � and a polynomial of type (3.16)�=� ��� ) 9«�	¬ � : �.6,� � W � � |Í� � (3.17)

From (3.17) we find an expression for
J ��� ��� J LN� �=� ��� ) 9«�	¬ � : ��61� � W � �	W � |®�)

� + � ��� � �=� ��� ) 9«�	¬ � : L� 6 L� � W � �IW �) J �=� ��� J LN A
which we know CG minimizes. If we take < � � � to be the set of eigenvalues of�

we get due to the minimization propertyJ ��� ��� J LN ) 9«�	¬ � : L� 6 L� � W � �	W �ç � \�R= � � ]?>@BA?C � N � 6 L� � W�� 9«�	¬ �;: L� W �) � \�R= � � ]?>@BA?C � N � 6 L� � W�� J ����� � J LN A (3.18)



3.2 Convergence Properties of CG 21

where the non-indexed
W

is the eigenvalue that maximizes 6 L� � W�� .
Equation (3.18) shows that the convergence problem can be transformed

into a problem of picking the best polynomial of a degree equal to the iteration
number, that approximates a set of points D � ��A ¸ ��EGF0H 9��¬ � D � W � A´�¶��E . From the
study of approximating polynomials we have the following results regarding
picking the best polynomial and thereby also of importance to the convergence
of CG:� Having a set of I points D � ~ � AI� � � � ~ � §) ~ � E a polynomial of degree I or

less exists which has the property 6�J � ~ � �Ì)*� � . This is another way of
stating that CG terminates after at most I iterations. In fact CG termi-
nates after a number of iterations equal to the number of distinct eigen-
values whose eigenvector is non-orthogonal to the error.� Clustered eigenvalues makes it easier for a low degree polynomial to ap-
proximate zero in these points and we can expect CG to converge faster.� If all eigenvalues are evenly distributed in the interval

À W;K�L ÒNM WNK ÐIß Ä a rea-
sonable approach is to minimize the maxima of the “absolute polyno-
mial”

� 6 � � on this interval. This is achieved by the the polynomial61� � W��2)PO � � @�QNR�S � @�QNT U x L @@ QVR�S x @ QNT U �O � � @�QVR�S � @�QNT U@�QVR�S x @�QNT U � A
where O � �XW ��) �L �	�XW - M Y L c ¸ � � - �XW c M Y L c ¸ � � � is the Chebyshev
polynomial (the proof is in [31]). Setting (cond

� ���È)[Z
) and using the

fact that the numerator polynomial has a maximal value of 1 we get from
(3.18) thatJ �=� ��� J N ç O � � W\K Ð	ß - WNK�L ÒW\K Ð	ß c WNK�L Ò � x � J �=�� � J N) O � � Z - ¸Z c ¸ � x � J �=�� � J:N) õ^] Õ M Z - ¸M Z c ¸ Ø � -¦Õ M Z c ¸M Z - ¸ Ø ��_ x � J ����� � J N �
The second part of the summation converges to zero as

�
increases and

the expression is commonly simplified toJ �=� ��� J:N çmõ Õ M Z c ¸M Z - ¸ Ø � J �=�� � J:N � (3.19)

From (3.19) we see that
Za` ¸

yields fast convergence but
Zcb ¸

results
in a possible slow convergence depending on whether the assumptions
are true or not.



22 Conjugate Gradients

The statements just reviewed have shown true for real problems and they
make a natural introduction to the concept of preconditioning. The finite pre-
cision problem results in slower convergence speed and a need for more itera-
tions — but the rules are still applicable in most cases.

3.3 Preconditioning

In the previous section we saw how the convergence of CG depends on the the
condition number and the eigenvalues of the coefficient matrix. Precondition-
ing is a method to improve convergence by lowering the condition number
and/or increasing the eigenvalue clustering.

The idea is to solve the modified problem7 x � � K ) 7 x � onA
(3.20)

where
7

is a SPD matrix which is easy to invert. If cond
� 7 x � � � �

cond
� ���

or the eigenvalues of
7 x � �

are more clustered than those of
�

we achieve a
higher rate of convergence. A good preconditioner

7
can also be viewed as an

approximation to
�

or, in other words, a good preconditioner is
7 x � ` � x �

so that
7 x � �

approximates the identity
8
.

However, the matrix
7 x � �

might not be SPD which is a necessity in the
case of CG. The solution is to by solve the system� x � � � x +GdK ) � x � onA dK ) � + K A
where � is a factorization of

7 ) �Ë� + (for example the Cholesky factoriza-
tion or the “square root”). The system has the same solution as (3.20) and the
coefficient matrix also have the same eigenvalues and eigenvectors as

7 x � �
.

In order to prove this assume that | is an eigenvector of
7 x � �

with eigenvalueW
. Then a simple calculation shows� � x � � � x + � � � + | � ) � x � � |) � + � x + � x � � |) � + � �Ë� + � x � � |) � + 7 x � � |) W � + | � (3.21)

The preconditioned CG algorithm is derived by replacing the system ma-
trix

�
with � x � � � x + ,

K
with � + K , and

o
with � x � o in Algorithm 2, fol-

lowed by substitutions of variables such that multiplications with � (and its
transposed etc.) are avoided. The result of this tedious and boring work can be
seen in Algorithm 4. In fact we do not need to form the preconditioning matrix7

explicitly if we are able to implicitly apply
7 x �

to some vector. If calcula-
tions are reused the cost of preconditioning amounts to one solution with the
preconditioner

7
.



3.3 Preconditioning 23

Algorithm 4 Preconditioned Conjugate Gradients (PCG). Solve
� K )�o

,�CA 7 p(r 9=s9
where both

�
and

7
are SPD.

1: �Å�� � )�o c � K �� �
2:

� ��� � ) 7 x � o % Preconditioning step
3:
��� �

4: while �Å� ��� §) ; do

5:
ÿ � ��� ) �e������gfGh # �����	�! � ����� N ! ���	� % Preconditioning step

6:
K � ��� � � ) K � ��� -uÿ � ��� � � ���

7: �Å� ��� � � ) �Å� ��� c ÿ � ��� � � � ���
8: i � �	� � � ) �e�����" #���fih # � ���	"$#��� � ����� f h # �����	�
9:

� � �	� � � ) 7 x � �Å� ��� � � - i � �	� � � � � ���
10:

���Ç� - ¸
11: end while

3.3.1 Well known preconditioners

Many preconditioners have been tested and used since the revival of CG around
1970. Some are iterative methods like the Jacobi and Gauss-Seidel while other
take another approach. A list of the best known preconditioners are found in
[2] but we will only list a few that have relevance to this thesis:� Jacobi preconditioning uses the diagonal of

�
and has been shown useful

if the diagonal elements are relatively different.� Gauss-Seidel preconditioning is originally an iterative method itself that
sequentially satisfies one equation from the system at the time and then
proceeds to the next. Gauss-Seidel has a symmetric variant which is suit-
able for preconditioning.� Incomplete factorization preconditioning uses an approximation to

�
which is easy to invert. The idea is to do a fast but inaccurate factoriza-
tion of

�
. An example could be only to calculate elements of an Cholesky

factor in already non zero places.� Block versions of all of the above.

Unfortunately none of these are particularly suited for ill-posed problems
and more specialized techniques must be used. They all try to improve on
the hole spectrum of eigenvalues, but in the context of ill-posed problems only
the large eigenvalues hold our interest — while the small eigenvalues are un-
wanted. However, in the next chapter we learn that both the Jacobi and the
Gauss-Seidel preconditioner in their block versions have given inspiration to
the two-grid preconditioners that concentrate their efforts on the large eigen-
values.



24 Conjugate Gradients



C H A P T E R 4

Ill-Posed Problems and
Conjugate Gradients

Several symmetric systems, some involving as many as twelve un-
knowns, have been solved on the IBM card programmed calculator.
In one case, where the ratio of the largest to the smallest eigenvalue
was 4.9, a satisfactory solution has been obtained already in the
third step; in another case, where this ratio was 100, one had to
carry out fifteen steps in order to get an estimate with six correct
digits. From [18].

The previous chapter focused on the CG algorithm in a general setting. This
chapter takes CG into the land of ill-posed problems. We will first experience
the regularizing effect of CG but the main subject will be the development of
two preconditioners and a variation of CG which are specifically tailored to-
wards ill-posed problems and their special properties. Theory on the expected
condition number is also included.

4.1 Regularization and Conjugate Gradients

The convergence of CG depends, as we have already seen, on the condition
number of the coefficient matrix. This leaves us with little hope when dealing
with ill-posed problems where we face a huge condition number. However
CG still has some nice properties. At each step CG minimizes the error in the
Krylov subspace

@ � �4AIonA � � and if
@ � �4AIo A � � for example approximates the � -

dimensional subspace spanned by the first � right singular vectors then CG
will yield a result close to the TSVD solution with truncation parameter � .

Hansen, O’Leary and Stewart show in [16, Theorem 6.4.2] that the first �
filter factors from the � th iteration of CG, i.e. Þ � 
 �� A � ) ¸ �Ã�Q� � , are close to 1
— or more precisely that

� Þ � 
 �� c ¸ � is bounded — while the last %ûc�� filter
factors converge to zero1. This result shows that limiting the iteration number

1The result is derived for the infinite precision CG.



26 Ill-Posed Problems and Conjugate Gradients

will give a regularization effect, but eventually CG converges to the unwanted
least square solution (all Þ � ) ¸ ). This “convergence” behaviour is called semi-
convergence.

jlknm

jporq�st?uwvq�xjzy|{~}q��?u

j��j yg�.}

Figure 4.1: Illustration of semiconvergence. The iterations follow the line from
K �� �

to the Tikhonov solution
K��

. Initially the iterations converge towards the solutionK��g��� � â L � Ò but from
K � ����e� â it starts to diverge from the solution as it approaches the least

square solution. If the system had been unregularized we would see convergence to-
wards

KÍÙSÚ
instead.

Another view on CG and regularization is to apply CG to the Tikhonov
regularized system (

& ) 8Q9
for simplicity)� ! + !{-u/18 9�� K ) ! + �¨�

(4.1)

The Tikhonov system has a smaller condition number than the ordinary least
squares system

!C+b!
because the eigenvalues of

!C+,!�-6/18 9
relate to the SVD

of
!(+b! ) G�E L G�+

as follows� ! + !{-0/,8:9 � ) G(E L G + -u/18:9) G(E L G + -u/,G 8:9kG +) G � E L -0/,8Q9 � G + �
(4.2)

From (4.2) we see that the condition number of the Tikhonov regularized equa-
tion system for

/ v F L9 isOQPSR�T � ! + !{-u/18 9��a) F L� -u/F L9 -0/ ç ¸ - F L�/ ` F L�/ �
Despite the improvement of the condition number a preconditioner could

very well be necessary in order to solve the system within a reasonable number
of iterations.

Finally it must be mentioned that the two regularization methods do not
exclude each other, so one can use the formulation (4.1) combined with a limi-
tation on the number of iterations. This idea is illustrated in Figure 4.1.



4.2 Two-Grid Methods 27

4.2 Two-Grid Methods

Hanke and Vogel proposed in [13] a type of preconditioners specifically tai-
lored for ill-posed problems. In [12] they further examines and test their idea.
Riley has in his Ph.D. thesis [29] investigated the computational costs of the al-
gorithms presented in the following. The multilevel idea is based on an article
by Rieder [28] which in turn is inspired by an article by King [20].

We are going to look at two preconditioners and a variation of CG called
Schur complement CG. They all rely on a subspace splitting which gave Hanke
and Vogel inspiration to denote the methods two-level. However, in this thesis
the methods are denoted two-grid because we believe that the term two-grid
describes the structure of the algorithms better. The next many pages are based
on [13], [12] and [29] but the derivations take smaller steps and explanations
are more plentiful in order to enhance “quick learning”.

The methods are aimed at a symmetric, positive definite system� K )�onA
(4.3)

where
� p4r 9�s9

and
K AIomp4r 9

comes from the Tikhonov regularized normal
equation introduced in Section 2.1�*) ! + !{-u/1& + & A o6) ! + �¨�
Choosing

& ) 8:9
gives some nicer/shorter formulas but they are naturally

more specialized and less general — unless a reformulation of the problem is
used [16, page 38ff]. We will derive the algorithms for a general

&
but in this

section we assume that
&a+1&

is SPD. Section 4.3 covers the complementary case
where

&2+1&
is semidefinite, i.e.,

&a+,&
has a nontrivial null space. To shorten and

simplify the notation we set
5 ) &n+,& p�r 9=s9

.

4.2.1 A Two-Grid Splitting

The two levels/grids are formed by a splitting of the space
r 9=sk9

into a � -
dimensional subspace � 
 and a

� %6c�� � -dimensional subspace
�m


where � 

and

�w

together spans

r 9=sk9
. The subspaces must be

5
-orthogonal, i.e., a

vector ¾ p�r 9 has a unique representation | ) ¾ -��
where ¾ p � 
 , � p� 


and ¾ +15�� )Á�
. Let the columns of

e p�r 9=sk

form a basis of � 
 and

let the columns of
g p¦r 9�s9 x 


form a
5

orthonormal basis for
� 


. The
requirements above tell us thate + 5Êg ) ; 
 > 9 x 
�A (4.4)g + 5Êg ) 8 9 x 
�� (4.5)

The subspace � 
 is in [13] denoted the coarse subspace for reasons ex-
plained later. Think of

e )ÇÀ � � � L �Q�Ã��� 
 Ä
as an operator from

r 9
into

r 




28 Ill-Posed Problems and Conjugate Gradients

and
g )�À � ��� L �Q�Ã���ù9 x 
�Ä as an operator from

r 9
into

r � 9 x 
 � . To accompanye
and

g
we define the matrices� ) e + 5Êe A

(4.6)7 ) e � x � e + 5 A
(4.7)� ) g�g + 5 ) 8:9 c�7 A (4.8)

where

� p(r 
Ssk

and 7 A��¥p(r 9=sk9 .

Observe that the inverse of

�
is defined because

5
is assumed to be SPD

and hence invertible. We now go through a couple of proofs on the properties
of 7 and

�
. Steps from the proof are used in later derivations and in a sense it

is not the theorem itself that is important but rather the proof.

Theorem 2 The matrix 7 is an
5

-orthogonal projector onto � 
 and
�

is the com-
plementary

5
-orthogonal projector onto

� 

.

Proof. Simple calculations show that 7 is a projection matrix7�7 ) e � x � e + 5Êe � x � e + 5) e � x � �'� x � e + 5) e � x � e + 5) 7 (4.9)

and due to (4.5)
�

is also a projector�^� ) g�g + 5Êg�g + 5) g 8 9 x 
 g + 5) g�g + 5) ���
(4.10)

The projectors are
5

-orthogonal because of (4.4)7 + 5 � ) � e � x � e + 5 � + 5Êg�g + 5) 5Êe � x + e + 5 g�g + 5) 5Êe � x + ; 
 > 9 x 
 g + 5) ; �
Furthermore we see that 7 e ) e � x � e + 5Êe) e � x � �) e
and (using (4.5)) � g ) g�g + 5Êg) g �

(4.11)



4.2 Two-Grid Methods 29

Any vector | p(r 9 has an unique representation | ) e � -mg o , where � pCr 

and

oup�r 9 x 

. From� 7 - �Ö� | ) 7 e � - 7 g o - � e � - � g o) e � -he � x � e + 5Êg o -hg�g + 5Êe � -wg o) | A

we see that 7 - �{) 8:9 , i.e., the projection matrices project into complementary
subspaces. %

The next step is to split the equation system (4.3) into a block matrix sys-
tem. Adjoining

e
and

g
into a full rank matrix

À e g ÄÌp¼r 9=s9
enables the

transformation À e g Ä + �fÀ eÊg ÄÝÀ e g Ä x � K ) À eÊg Ä + oa�
(4.12)

Defining | ) £ | �| L ¤ )�À e g Ä x � K � K ) e | � -wg | L (4.13)

and splitting the system into blocks we get£ eÌ+ � e e½+ � gg + � e g + � g ¤ £ | �| L ¤ ) £ eÌ+ og + o ¤ � (4.14)

Introducing the notation���´� ) e + � e p�r 
Ss�
 A
(4.15)��� L ) e + � g p�r 
Ssk9 x 
 A
(4.16)� L � ) g + � e p�r 9 x 
Ssk
 A
(4.17)� L´L ) g + � g p�r 9 x 
¶sk9 x 
 A
(4.18)

where the index indicates the position within the block matrix simplifies the
expression a bit; £ ���	� ��� L� L � � L´L ¤ £ | �| L ¤ ) £ eÌ+ og + o ¤ � (4.19)

The constraints (4.4) and (4.5) on the columns of
e

and
g

simplify (4.14) to£ eÌ+ � e eÌ+1!(+b!4gg + ! + !4e g + ! + !4g -u/18 9 x 
 ¤ £ | �| L ¤ ) £ eÌ+ og +,o ¤ � (4.20)

The basic idea of the Jacobi and symmetric Gauss-Seidel inspired precon-
ditioners described later is to discard

g�+b!(+,!4g
and leave

/,8 9 x 
 from the the
bottom right part of the coefficient matrix (

� L´L
) and use this as an approxima-

tion to
À eÊg Ä + �4À eÊg Ä

. To justify this deletion consider the the SVD decompo-
sition of

! ) D(E G�+
. Then let

g ) G�
 � �´� 9 )¦À ¾ 
 � � AÃ�Q�Q�ÃA ¾ 9 Ä be the last %(c0�



30 Ill-Posed Problems and Conjugate Gradients

right singular vectors and we see thatg + ! + !4g -0/,8 9 x 
 ) g + G�E L G + gÊ-0/18 9 x 
) G +
 � �´� 9 À G(�	� 
1G�
 � �´� 9 Ä E L £ G�+�´� 
G�+
 � �	� 9 ¤ G�
 � �	� 9 -0/,8:9 x 
)�À ; 9 x 
 > 
 8 9 x 
�Ä E L £ ; 9 x 
 > 
8 
 x 9 ¤ -0/,8 9 x 
) E L 
 � �	� 9 > 
 � �	� 9 -0/,8 9 x 
��
If
/

is chosen such that
/ v F L
 � � , we see that the term

/18 9 x 
 “dominates”�$+b!(+,!��
— in other words

� L´L ) �$+,!(+b!�� -u/18:9 x 
 ` /18:9 x 
 .
This leads to an equation system with the coefficient matrix��*) £ eÌ+ � e e½+,!(+b!4gg +1!(+b!4e /18:9 x 
 ¤ ) £ � �	� � � L� L � �� L	L ¤ A (4.21)

which we will split into three matrices for later use (
��¦) &f- ��.-uD

):�� ) £ � �´� ;; �� L´L ¤ A & ) £ ; ;� L � ; ¤ A D ) £ ; ��� L; ; ¤ � (4.22)

4.2.2 Jacobi Preconditioning

The standard Jacobi preconditioner is formed by the diagonal (or block diago-
nal) of the coefficient matrix. If we take the formulation from (4.21) and delete
the off diagonal blocks we get a Jacobi-like preconditioner which in [13], [12]
and others are called the “Additive Schwarz Preconditioner”7�� ) �� ) £ eÌ+ � e ; 
 > 9 x 
; 9 x 
 > 
 /,8 9 x 
 ¤ � (4.23)

It is possible to use (4.23) directly in a standard preconditioned conjugate
gradient method like the one in Algorithm 4. However, the residual and itera-
tion vector must be transformed according to (4.12). Hence the total precondi-
tioning step takes the form K )�À e g Ä 76x �� À eÊg Ä + � � (4.24)

We will now show how to eliminate the explicit use of
g

and how oth-
erwise to exploit the structure of the preconditioner. When using (4.23) as a
preconditioner it is necessary to solve systems of the type7 � | ) À e g Ä + ��� �´� | � ) e + � (4.25)/ | L ) g + � � (4.26)



4.2 Two-Grid Methods 31

Starting out from equation (4.26) and using the results from (4.9)-(4.11) we
get g | L ) ¸/ g�g + �) ¸/ g�g + 5�5 x � �) ¸/ � 5 x � �) ¸/ � 8 c G � x � e + 5 � 5 x � �) ¸/ � 5 x � c e � x � e + � � � (4.27)

Finally we use inversion of
� �´�

to solve (4.25), and insertion into (4.13) yieldsK ) e | �¨-hg KÍL) e � � x ��´� e + � � - ¸/ 5 x � �?c ¸/ e � x � e + �) e � � x ��´� - ¸/ � x � � e + � - ¸/ 5 x � � A (4.28)

and we have avoided use explicit use of
g

. This formula can be plugged di-
rectly into the preconditioned CG (Algorithm 4). However because the pre-
conditioning step takes place at each iteration an initial factorization of

� �´�
is preferable. A Cholesky factorization is a good choice because

� �	�
is SPD.

Similar considerations can be applied to the inversion of
5

, but this case calls
for a QR factorization because a QR factorization of

& )����
also carries a

factorization of
5 ) &a+b& )�� + � + � �*)�� + �

. A Matlab program using the
Jacobi-like two-grid preconditioner is listed in appendix A.3.1.

We note that the preconditioning step involves solving one system with� �´�
, one with

�
and one system with

5
. The matrices

� �´� A � pmr 
Ssk

both

depend on the dimension of � 
 . Finally we have 3 applications of
e

or
eÈ+

and the use of
�

in the actual CG iteration. The solution of a system with5 p4r 9=s9
looks problematic at first, but in most applications

5
is banded or

has some other structure which makes the factorization and solution fast.

The Connection to Multigrid

We have previously denoted � 
 the “coarse subspace” and we have called the
preconditioner two-grid. The term coarse subspace originates from multigrid
methods [3]. A fundamental multigrid operation can be described as a three
step process:

1. A vector (the current result) is projected onto a coarse grid — a restric-
tion.



32 Ill-Posed Problems and Conjugate Gradients

2. The system is solved (exactly) on the coarse subspace (easy because it is
smaller). A correction is hereby obtained.

3. The correction is projected back onto the original (fine) grid — a prolon-
gation — where it is used to correct the fine solution.

Equation (4.23) includes the part
e � x ��´� eÌ+ � which can be interpreted as a

transformation onto a coarse grid (restriction), an exact solution and finally
a projection back (prolongation). Hence we have a two-grid method.

The obvious step from a two-grid to a three-grid method has been attempted
by Vogel [35] but the three-grid preconditioner showed worse results than the
much more simple two-grid strategy. We will in this thesis only treat and dis-
cuss two-grid methods because of Vogel’s results.

4.2.3 Symmetric Gauss-Seidel Preconditioning

In contrast to the Jacobi-like method the symmetric Gauss-Seidel-like precon-
ditioner also involves the off diagonal blocks. A matrix factorization of the
preconditioner takes the form7 y,z ) � �� -0& � �� x � � �� -0D �:� (4.29)

Note that the Jacobi and Gauss-Seidel two-grid preconditioners are equal if
the subspaces � 
 and

� 

are constructed from the columns of the matrix

G
of the SVD (in the case

& §) 8
it would be the columns of the matrix usually

denoted ¡ from the GSVD). This choice yields zero off-diagonal parts, i.e.,& ) D�+ ) ; 9 x 
 > 
 , and diagonal diagonal blocks.
As in the case of the Jacobi two-grid preconditioner it is possible to refor-

mulate the solution of
7 y1z | )�À e g Ä + � such that the actual creation of

g
can

be avoided. Maybe even more important we avoid
� � L

and its transposed
� L �

that are large and most likely full.
First we split � À e g Ä + � ) £ e½+ �g + � ¤ ) £ � �� L ¤ (4.30)

Premultiplying � with
7dx �y,z ) � � -0D � x � � � � -0& � x � yields in three steps� �� -0& � x � � ) £ � x ��´� � ��� x �L	L � � L c � L �:� x ��	� � �Ã� ¤ A� � �{-0& � x � � ) £ � �� L c � L ��� x ��	� � � ¤ A� �.-uD � x � � � �{-0& � x � � ) ¢ � x ��	� � � � c � � L �� x �L´L � � L c � L � � x ��´� � � �	���(x �L´L � � L c � L �Q�(x ��´� � �Q� £) £ K �K L ¤ � (4.31)



4.2 Two-Grid Methods 33

A substitution of the definitions of
���´�

, � � etc. from (4.12) and (4.30) into
(4.31) produces the following expressions for | � and | L| � )�� x ��´� � e + �ïc e + ! + !4g ¸/ � g + �?c g + ! + !4e � x ��	� e + � �I� (4.32)| L ) ¸/ � g + �Æc g + ! + !4e � x ��´� e + � ��� (4.33)

The solution of the preconditioning is given by
K ) e | � -�g | L and in order

to simplify the expression we utilize the equations (4.9)-(4.11) and obtaing | L ) ¸/ g�g + � �Æc ! + !4e � x ��´� e + � �) ¸/ g�g + 5�5 x � � �Æc ! + !4e � x ��´� e + � �) ¸/ � 8 9 c�7 � 5 x � � �Æc ! + !4e � x ��´� e + � �) ¸/ � 5 x � c e � x � e + � � �ùc ! + !4e � x ��	� e + � � (4.34)

and e | � ) e � x ��´� � e + �?c e + ! + !4g ¸/ � g + �ïc � L �Q� x ��´� e + � �I�) e �(x ��´� e + � �?c ! + !4g | L �:� (4.35)

The formulas have several possibilities for reuse of already calculated quan-
tities, for example (4.34) should be evaluated first and the result is then used in
(4.35) whereby the use of

g
is avoided even though it appears in (4.35). This is

used in Algorithm 5. The algorithm lays the ground for the Matlab implemen-
tation in Appendix A.3.2.

Algorithm 5 Gauss-Seidel two-grid preconditioning,
K ) 7ûx �y,z � , for SPD

&a+,&
.

The comments indicate the equation from which the calculation is extracted.

1: ¾ ) e � x ��	� eÌ+ � % Eq. (4.34)
2: � ) �?c !(+b! ¾ % Eq. (4.34)
3:

� ) 5 x � � % Eq. (4.34)
4: | ) � c e � x � e½+ � % Eq. (4.34)
5:
K�¤ ) �� | % Eq. (4.34)

6:
�f) �Æc !C+b! K�¤ % Eq. (4.35)

7:
K�¥ ) e � x ��	� e½+ � % Eq. (4.35)

8:
K ) K�¥ - K�¤
Scanning Algorithm 5 we count two solutions with coefficient matrix

�(�´�
,

one solution with

�
and one solution with

5
. The algorithm uses two appli-

cations of
!(+1!

and 6 applications of
e

or
eÌ+

. To this the the actual CG step
must be added implying one application of

�
.



34 Ill-Posed Problems and Conjugate Gradients

The Connection to Domain Decomposition

It is known from the literature, e.g. [32], that Jacobi and Gauss-Seidel in their
block versions are similar to the additive and multiplicative Schwarz meth-
ods respectively. The sources of our methods [13], [12] and [29] also denote
the preconditioners as Schwarz methods and the similarities are undoubtedly
many.

The actual algorithms are equal if
� L´L

is unchanged. Furthermore the sub-
spaces � 
 and

�h

must be created from the columns of the identity matrix

according to the domain decomposition, i.e.,
À ¸ �t�Q�Ã�û�ÂÄÑ+

would be a col-
umn in

e
if “point 1” is in domain 1 and if it is in domain 2 it is placed

in
g

. However, domain decomposition usually operates with overlapping re-
gions/domains where we, for our methods, have separate domains and no
overlap in the sense that � 
 and

� 

are
5

-orthogonal.

4.2.4 Schur Complement Conjugate Gradients

Both the Jacobi and the symmetric Gauss-Seidel preconditioner assumeJ g +b!(+,!4g J L
to be much smaller than

/
and hence they disregard it. Schur

complement CG takes another approach and does not discard the
g + ! + !4g

part. As the name indicates it is not a preconditioner but a variant of CG.
Applying block Gaussian elimination to (4.20) we get£ ���´� ��� L; � L´L c � L � � x ��	� � � L ¤ £ | �| L ¤ ) £ eÌ+ og + o c � L � � x ��´� eÌ+ o.¤ A

where the lower right block,¦C)�� L´L c � L � � x ��´� � � L ) g + � � 8 c e � x ��	� e + � � g A (4.36)

is denoted the Schur complement to
� �	�

in the coefficient matrix (4.20).
Isolating | � in the first equation yields| � )�� x ��	� e + o c � x ��´� ��� L | L A (4.37)

and rearranging the second equation gives¦ | L ) g + o c � L �Q� x ��´� e + on� (4.38)

We see that if we solve (4.38) with respect to | L we obtain | � easily using (4.37).
The Schur complement

¦upCr � 9 x 
 � s � 9 x 
 � is SPD because
�

is SPD [1, The-
orem 3.9] and furthermore

¦
is large (we would like � to be small because of

the factorizations of
���´�

and

�
). Hence CG comes to mind as a reasonable

choice for solving (4.38). We would like the algorithm to work without explicit
knowledge of

g
and the off diagonal blocks

��� L
and

� L �
because of their size.

Furthermore we would like the algorithm to work on vectors in terms of the
original system such that the iteration vector and residual is available during



4.2 Two-Grid Methods 35

the iterations. This is a bit more complicated than we have seen for Jacobi and
Gauss-Seidel preconditioning and the derivation is longer and more compli-
cated.

Recall (Algorithm 2) that CG needs to compute the following three quanti-
ties § � ) §o c ¦ §K A

(4.39)§¨ ) § � + § � A (4.40)§ÿ ) §¨§� + ¦ §� A (4.41)

where the vectors with a tilde denotes vectors in the “Schur complement space”,
e.g. we have

§K ) | L .
For a start we need a suitable starting guess which we obtain by looking at

the expression
K ) e | � -hg | L ,K ) e � � x ��	� e + o c � x ��´� ��� L | L � -wg | L) e � x ��´� e + o c e � x ��	� e + � g | L -wg | L) e � x ��´� e + o - � 8 9 c e � x ��	� e + � � g | L � (4.42)

Equation (4.42) hints that the starting guess
K �� � ) e �Cx ��	� eÌ+ o would be ap-

propriate. Then the results, that is the iteration vectors, are simple updates of
the starting guess

K � ��� ) K �� � - � 8:9 c e � x ��´� eÌ+ ��� g | � ���L . We omit the iteration
index hereafter to unclutter the text and formulas.

Next we find an expression for the residual� ) o c � K) o c � e � x ��´� e + o - � � 8 c e � x ��´� e + ��� g | L) � 8 c � e � x ��	� e + � � o c � g | L ��A
and for the residual in the Schur complement space

§ � we get§ � ) §o c ¦ | L) � g + o c g + � e � x ��´� e + o3� c � g + � g c g + � e � x ��´� e + � g � | L) g + � o c � e � x ��´� e + o c � g | L - � e � x ��´� e + � g | L �) g + �	� 8 c � e � x ��´� e + � � o c � g | L �I�) g + � A (4.43)

which enables us to find

§¨ by§¨ ) § � + § �) � + g�g + �) � + g�g + 5�5 x � �) � + � 5 x � �) � + � 5 x � c e � x � e + � � � (4.44)



36 Ill-Posed Problems and Conjugate Gradients

This equation can be further reduced owing toe + � ) e + � 8 c � e � x ��	� e + � � o c � g | L �) � e + c e + � e � x ��	� e + � � o c � g | L �) � e + c ���´��� x ��	� e + � � o c � g | L �) ; 
 > © A
and thus we have

§¨ ) � + 5 x � � � (4.45)

Equation (4.43) suggests that we define the decent direction

§�
by§� ) g + � A � p�r 9

and applying the Schur complement yields¦ §� ) g + � � 8:9 c e � x ��	� e + � � g�g + �) g + � � 8 9 c e � x ��	� e + � � g�g + 5�5 x � �) g + � � 8 9 c e � x ��	� e + � � � 8 9 c e � x � e + 5 � 5 x � �) g + � � 8 9 c e �Cx ��	� e + � c � 8 9 c e �Cx ��	� e + � � � e � x � e + 5 �	� 5 x � �) g + � � 8 9 c e � x ��	� e + � c � e c e � x ��´� e + � e � � � x � e + 5 �I� 5 x � �) g + � � 8:9 c e � x ��	� e + � c � e c e � x ��´� � �	� � � � x � e + 5 �I� 5 x � �) g + � � 8 9 c e � x ��	� e + � c � ; 9 > 
`� � � x � e + 5 �	� 5 x � �) g + � � 8:9 c e � x ��	� e + � � 5 x � � �
(4.46)

For any

§� p(r 9 x 

define

� p(r 9
by� )�� � 8 9 c e � x ��	� e + � � 5 x � � (4.47)

and by the definition of the Schur complement (4.36) we simplify (4.46) to¦ §� ) g + � �
It is now straightforward but tedious to calculate the denominator of

§ÿ )§¨ ã � §�1+ ¦ §� �§� + ¦ §� ) � + g�g + �) � + g�g + 5�5 x � �) � + � 5 x � c e � x � e + � �) � + 5 x � � c � + e � x � e + � � 8 9 c e � x ��´� e + ��� 5 x � �) � + 5 x � � c � + e � x � � e + � c e + � e � x ��	� e + � � 5 x � �) � + 5 x � � c � + e � x � � e + � c ���´�:�Cx ��	� e + � � 5 x � �) � + 5 x � � c � + e � x � � ; 
 > 9 � 5 x � �) � + 5 x � � �
(4.48)



4.3 Two-Grid Methods part II, Semidefinite
&n+b&

37

Finally the update of the solution is done byK � �	� � � ) K � ��� -uÿ � ��� � 8 9 c e � x ��´� e + � � g §� � ���) K � ��� -uÿ � ��� � 8:9 c e � x ��´� e + � � g�g + � � ���) K � ��� -uÿ � ��� � 8 9 c e � x ��´� e + � � g�g + 5�5 x � � � ���) K � ��� -uÿ � ��� � 8 9 c e � x ��´� e + � � 5 x � � � ��� A (4.49)

where the last step is similar to (4.46). The original CG algorithm uses iterative
updates of the residual and the search direction which of course also apply to
Schur CG. In addition we implement the following updates� � ��� ) 5 x � �Å� ���)� � ��� � � ) 5 x � �Å� �	� � �) 5 x � �Å� ��� c ÿ � ��� 5 x � � � ���) � � ��� c ÿ � ��� 5 x � � � ��� A (4.50)

and ª � ��� ) 5 x � � � ���)ª � ��� � � ) 5 x � � � �	� � �) 5 x � � �Å� ��� � � - i � �	� � � � � ��� �) � � ��� � � - i � 
 � � � ª � ��� � (4.51)

Algorithm 6 shows the use of the just presented formulas and an actual
implementation is listed in appendix A.3.3.

Finally we sum up the costs of Algorithm 6. We see that each iteration
involves solving one system with

� �´�
and one with

5
. In addition we find

two applications of
�

and two applications of
e

or
eÈ+

.

4.3 Two-Grid Methods part II, Semidefinite « O «
The previously presented algorithms assume

& + &
to be SPD, but this is not al-

ways preferable. An example is the discrete representation of the first deriva-
tive which has a null space spanned by

À ¸�¸ �Q�Ã� ¸ Ä +
. Thus we face troubles when

we wish to invert
&a+,&

and

�
. Three solutions to this problem are available:

1. A fairly common fix is to add boundary conditions to
&

, e.g. homoge-
neous Neumann boundary conditions, and thereby changing

&
to be in-

vertible.



38 Ill-Posed Problems and Conjugate Gradients

Algorithm 6 Schur complement CG. Solves
� K )¥o

. The matrix
5 ) &n+1&

must be SPD and hence invertible. Comments show the originating equation.

1:
K �� � ) e � x ��´� eÌ+ o % Eq. (4.42)

2: �Å�� � )�o c � K �� �
3:
� �� � ) 5 x � �Å�� � % Eq. (4.45)

4:
� �� � ) �¶��� �

5:

ª ��� � )m� ��� �
6: ¨ �� � )�� + �� � �Å�� �
7:
��� �

8: repeat
9: ¾µ� ��� ) � 8 c e � x ��´� eÌ+ � � ª � ��� % Eq. (4.47)

10:
� � ��� )�� ¾3� ��� % Eq. (4.47)

11: ¬b� ��� ) 5 x � � � ��� % Eq. (4.48)
12:

ÿ � ��� ) ¨ � ��� ã � + � ��� ¬b� ��� % Eq. (4.48)
13:

K � ��� � � ) K � ��� -uÿ � ��� ¾3� ��� % Eq. (4.49)
14: �Å� ��� � � ) �Å� ��� c ÿ � ��� � � ���
15:

� � ��� � � )�� � ��� c ÿ � ��� ¬b� ��� % Eq. (4.50)
16: ¨ � �	� � � )m�b+� �	� � � �Å� ��� � � % Eq. (4.45)
17: i � �	� � � ) ¨ � ��� � � ã ¨ � ���
18:

� � �	� � � ) �Å� �	� � � - i � ��� � � � � ���
19:

ª � �	� � � )�� � �	� � � - i � ��� � � ª � ��� % Eq. (4.51)
20:

���Ç� - ¸
21: until stop



4.3 Two-Grid Methods part II, Semidefinite
&n+b&

39

2. Modify the problem into “standard form” [16, Section 2.3.1]. This tech-
nique absorbs

&
into

�
and thereafter uses the identity as the penalty

operator. The identity is SPD and the already treated algorithms can be
applied.

3. Modify the algorithms such that they take the null space of
&

into con-
sideration. One such approach is the implicit transformation [16, Section
3.2.2] used in the preconditioned iterative methods from REGULARIZA-
TION TOOLS [17].

All three approaches are usable but we will only deal with the third and
adapt the algorithms to the nontrivial null space of

& + &
.

The modifications take place already in the creation of the subspaces � 

and

� 

on which we now enforce further restrictions. First we need the  -

dimensional null space of
&

to be a subspace of � 
 , that is
��� & �¯® � 
 . The null

space of
&

is normally given from the choice of
&

, e.g. the second derivative
has the its null space spanned by D À ¸Ö¸ �Ã�Q� ¸ Ä + AÌÀ ¸Èõ �Ã�Q� % Ä + E . Let the first 
columns of

e
be an orthogonal basis of

��� & �
with unit length and force the the

last �íc9 columns to be orthogonal to the first  columns. Furthermore make
the columns of

g
orthogonal to the null space of

&
(remember that we only useg

implicitly and this restriction is therefore only used during the derivations).
Thus the matrix

e p�r 9=s�

has two partse )�À e � ez° Ä

where
e � p�r 9�s © A e�° p(r 9=sk
 x © �

Following the same pattern as with an invertible and SPD regularization ma-
trix

5 ) &a+,&
we define the matrices� ) e + ° 5Êe ° A (4.52)7 ° ) e ° � x � e + ° 5 A (4.53)7 � ) e � e +� A (4.54)7 ) 7 � - 7 ° A (4.55)� ) g�g + 5 ) 8 c�7 A (4.56)

where the columns of
g

once again span
�h


. The matrix

�
is invertible be-

cause
e °

in (4.52) takes any vector into the orthogonal complement of
��� 5 �

.
Now a we go through a couple of derivations similar to those made in the SPD
case but taking the null space of

5
into account.

Theorem 3 Assume
��� � � ) � � e � � . If the bases for for � 
 and

� 

defined by the

columns
e

and
g

respectively satisfy (4.4) and (4.5) then the operators 7 and
�

are5
-orthogonal projection operators onto � 
 and

�h

respectively.



40 Ill-Posed Problems and Conjugate Gradients

Proof The proofs that
�t)±� L

and
� g ) g

are equal to the SPD case, see
(4.10) and (4.11). For

� e
we get� e ) �(À e � e ° Ä) À ; 9 > 
 ; 9 > 9 x 
 Ä) ; 9��

We see for 7 ° that 7 ° 7 ° ) e�° � x � e + ° 5Êe�° � x � e + ° 5) e�° � x � �'� x � e + ° 5) e ° � x � e + ° 5) 7 °
and in the case of 7 � 7 � 7 � ) e � e +� e � e +�) e � 8 © e +�) 7 � �
Because the columns of

e � are orthonormal to the columns of
e²°

we have that7 � 7 ° ) e � e +� e ° � x � e + ° 5) e � ; © > 
 x © � x � e + ° 5) ; 9
and because

e � spans
��� 5 �

we get7 ° 7 � ) e�° � x � e + ° 5Êe � e +�) e�° � x � e + ° ; 9 > © e +�) ; 9��
Now we calculate7�7 ) � 7 � - 7 ° � � 7 � - 7 ° �) 7 � 7 � - 7 � 7 °C- 7 ° 7 � - 7 ° 7 °) 7 � - ; 9 - ; 9 - 7 °) 7
and combined with the fact that7 g ) 7 � gÊ- 7 ° g) ; 9



4.3 Two-Grid Methods part II, Semidefinite
&n+b&

41

we conclude that 7 and
�

are projection operators with
�

projecting into
� 


.
To establish that 7 projects into � 
 note that any ¾ p � 
 can be written as a
linear combination of the form ¾ ) � �4� � - � ��� L - HÃHQH - � 
(� 
d) e � . If we
multiply ¾ with 7 we get7ù¾ ) � 7 � - 7 ° � e �) � 7 � - 7 ° �:À e � e ° Ä �) À � 7 � - 7 ° � e � A � 7 � - 7 ° � e ° Ä �) À e � e�° Ä �) e � ) ¾
and we see that 7 is a projection operator into � 
 %

With these results in mind we are now ready to extend the two-grid pre-
conditioners to the case of an symmetric and semidefinite

&n+,&
.

Jacobi Preconditioning Revisited

From the derivation of the Jacobi two-grid preconditioner we have the expres-
sion 7 x �� � ) e � x ��´� e + � - ¸/ g�g + � A (4.57)

which we by means of the operators presented in (4.52)-(4.56) rewrite such that
the explicit use of

g
is avoided. For the derivation we need the pseudo inverse

of
5

denoted by
5 Y

. From the definition of the pseudo inverse (2.8) it is clear
that

5�5 Y
forms an orthogonal projection operator onto the complement of

the null space of
5

. Because the columns of
g

and
e °

are orthogonal to the
same null space we have g + 5�5 Y ) g + A

(4.58)e + ° 5�5 Y ) e + ° A (4.59)e +� 5�5 Y ) ;N© > 9��
(4.60)

Simple calculations then showg�g + ) g�g + 5 5 Y) � 8 9 ca7 � 5 Y) 5 Y c e ° � x � e + ° c�7 � 5 Y A (4.61)

which inserted into (4.57) yields76x �� � ) e � x ��	� e + � - ¸/ �I� 8 9 ca7 � � 5 Y c e�° � x � e + ° � � �
We see that the computational costs are almost equal to the Jacobi precondi-

tioner targeted a problem positive definite
5

. Observe that
� 8 9 cz7 � � 5 Y ) 5 Y

because the pseudo-inverse never has components in the null-space of
5

.
However, we prefer to keep the extended version because of implementation
issues briefly explained in Appendix A.2.



42 Ill-Posed Problems and Conjugate Gradients

Gauss-Seidel Preconditioning Revisited

We use equation (4.61) to avoid the explicit use of
g

in (4.34)g | L ) ¸/ g�g � �?c ! + !4e � �	��e + � �) ¸/ � 5 Y c e ° � x � e + ° c�7 � 5 Y � � �Æc ! + !4e � �	��e + � ��A (4.62)

while (4.35) remains unchangede | � ) e � x ��´� e + � �?c ! + !4g | L �:� (4.63)

An algorithmic formulation is listed in Algorithm 7 and an actual Matlab
implementation is located in Appendix A.4.2. We see that one preconditioning
step involves two solutions with

���´�
, one solution with

�
and one “solution”

with
5

. The pseudo inverse is calculated by means of an QR factorization. In
addition the preconditioning step involves two applications of

!4+,!
, 6 appli-

cations of
e

(A combination of 7 � , e�°
and

e + ° is counted as two applications)
and the application of

�
from the actual CG step.

Algorithm 7 Gauss-Seidel two-grid preconditioning, | ) 7dx �y1z � for system
with semidefinite

&a+b&
. Comments marks differences to Algorithm 5.

1: ¾ ) e � x ��	� e½+ �
2: � ) �ïc !(+1! ¾
3:

� ) 5 Y � % Pseudo inverse
4: | ) � c�7 � � c e ° � x � eÌ+ ° � % Eq. (4.62)
5:
K ¤ ) �� K

6:
�f) �?c !C+b! K�¤

7:
K�¥ ) e � x ��´� eÌ+ �

8:
K ) K�¥ - K�¤

Schur Complement Method Revisited

It should come as no surprise that the modification of the Schur complement
CG method follows the same track as the Jacobi and Gauss-Seidel precondi-
tioners. Basicly we use the substitution of

g�g +
from (4.61) instead of the simi-

lar transformation (4.27) used in (4.44) and (4.48). The first change is found for
§¨ §¨ ) § � + § �) � + g�g + �) � + g�g + 5�5 Y �) � + � 8:9 c�7 � 5 Y �) � + � 5 Y c e ° � x � e + ° 5 5 Y c e � e +� 5 Y � �



4.3 Two-Grid Methods part II, Semidefinite
&n+b&

43

and because of (4.59) we obtain§¨ ) � + � 5 Y c e ° � x � e + ° c e � e +� 5 Y � � � (4.64)

Again we define the decent direction

§�
by§� ) g + � A

and applying the Schur complement yields¦ §� ) g � � 8 9 c e � x ��´� e + � � g�g + �) g � � 8:9 c e � x ��´� e + � � g�g + 5�5 Y �) g � � 8 9 c e � x ��´� e + � � � 8 9 c e�° � x � e + ° 5 c e � e +� � 5 Y � (4.65)

We now focus on the middle part of (4.65)� 8 9 c e � x ��´� eÌ+ � � � 8 9 c ez° � x � eÌ+ ° 5 c e � eÌ+� �)� 8:9 c e � x ��	� eÌ+ � c � 8:9 c e � x ��	� eÌ+ � � � e ° � x � eÌ+ ° 5¢-we � e½+� � �)8 9 c e � x ��´� eÌ+ � c � 8 9 c e � x ��	� eÌ+ � �®À e � e�° Ä £ eÌ+�� x � e + ° 5 ¤)8:9 c e � x ��´� eÌ+ � c � 8:9 c e � x ��´� eÌ+ ��� e £ e½+�� x � e½+ ° 5 ¤)8 9 c e � x ��´� eÌ+ � c � e c e � x ��	� e½+ � e � £ eÌ+�� x � eÌ+ ° 5 ¤)8 9 c e � x ��´� eÌ+ � c � e c e � x ��	� ���´�Q� £ eÌ+�� x � e + ° 5 ¤)8:9 c e � x ��´� eÌ+ �4A (4.66)

which substituted into (4.65) yields¦ §� ) g + � � 8 9 c e � x ��´� e + ��� 5 Y � �
We now define

� p�r 9
by� )�� � 8 9 c e � x ��	� e + � � 5 Y � A

and we have the simplified expression¦ §� ) g + �
(4.67)



44 Ill-Posed Problems and Conjugate Gradients

Finally we calculate the denominator of

§ÿ ) §¨ ã � §�,+ ¦ §� � from (4.67)§� + ¦ §� ) � + g�g + �) � + g�g + 5�5 Y �) � + � 8Q9 c e ° � x � e + ° 5 c G � G +� � 5 Y �) � + 5 Y � c � + � e ° � x � e + ° 5 c G � G +� � 5 Y �
The second term is rewritten as follows�1+ � e�° � x � eÌ+ ° 5 c G � G�+� � 5 Y �)�1+ � e ° � x � e½+ ° � �)�1+ � e ° � x � eÌ+ ° �I� � 8:9 c e � x ��	� eÌ+ � � 5 Y �)�1+ ð ; 9 > 
 e�° � x � ò £ eÌ+�e + ° ¤ � � 8 9 c e � x ��´� eÌ+ � � 5 Y �)� +dð ; 9 > 
Æe ° � x � ò e +b� � 8:9 c e � x ��	� e +1� � 5 Y �)�,+ ð ; 9 > 
ùe ° � x � ò � eÌ+ � c eÌ+ � e � x ��	� eÌ+ � � 5 Y �)�,+ ð ; 9 > 
 e�° � x � ò � eÌ+ � c ���´��� x ��	� eÌ+ � � 5 Y �)�1+ ð ; 9 > 
 e�° � x � ò � ; 
 > 9�� 5 Y �) �

(4.68)

and we obtain
§� + ¦ §� ) � + 5 Y � �

(4.69)
The result compared to the SPD-version is a change from the inverse of

5
to the pseudo inverse

5 Y
and one extra projection operation. The algorithm is

listed in Algorithm 8 and the Matlab program can be found in Appendix A.4.3.
A count of operations tells that Algorithm 8 needs one solution with

� �´�
,

one solution with

�
and one solution with

5
. Furthermore we count two ap-

plications of
�

, one and 6 applications of
e

or
eÈ+

( 7 � and 2 times 7 °
counting

as 4 applications).

4.4 A Theoretical Comparison

This section describes the expectations we have regarding the algorithms both
in terms of computational cost and convergence speed from a theoretical point



4.4 A Theoretical Comparison 45

Algorithm 8 Schur complement CG for semidefinite
5 ) &n+1&

. Changes w.r.t
Algorithm 6 is marked by comments.

1: |¨��� � ) e � x ��	� e +bo
2: �Å�� � )�o c � |2�� �
3:
B �� � ) 5 Y �Å�� � % Pseudo inverse

4:
� �� � )�B �� � ca7 ° � x � 7 + ° �¶��� � ca7 � B �� � % Eq. (4.61)

5:
� ��� � ) �Å�� �

6:

ª �� � )�� ��� �
7: ¨ ��� � )m� + ��� � �Å�� �
8:
��� �

9: repeat
10: ¾µ� ��� ) � 8:9 c e � x ��	� eÌ+ � � ª � ���
11:

� � ��� )�� ¾3� ���
12:

� � ��� ) 5 Y � � ��� % Pseudo inverse
13: ¬b� ��� )
� � ��� ca7 ° � x � 7 + ° � � ��� ca7 � � � ��� % Subtraction of null space
14:

ÿ � ��� ) ¨ � ��� ã � �1+� ��� ¬Í� ��� �
15: |2� �	� � � ) |2� ��� -uÿ � ��� ¾3� ���
16: �Å� ��� � � ) �Å� ��� c ÿ � ��� � � ���
17:

� � ��� � � )m� � ��� c ÿ � ��� ¬b� ���
18: ¨ � �	� � � )�� + � �	� � � �Å� ��� � �
19: i � ��� ) ¨ � �	� � � ã ¨ � ���
20:

� � �	� � � ) �Å� �	� � � - i � ��� � � ���
21:

ª � �	� � � )�� � �	� � � - i � ��� ª � ���
22:

���Ç� - ¸
23: until stop



46 Ill-Posed Problems and Conjugate Gradients

of view. The theoretical results presented here are in Chapter 6 compared to
actual implementations applied to a series of test problems.

4.4.1 Computational Costs

Table 4.1 contains a summary of the computational costs of one iteration for
the two-grid methods. Jacobi is very simple and it comes as no surprise that it
is cheaper than both Gauss-Seidel and Schur complement. The semidefinite

5
case involves two extra applications of

e
for both Schur CG and Jacobi while

Schur CG also have one solution with

�
not found in the SPD case. The GS

preconditioner is equally expensive in both cases.

Positive definite
5

Semi definite
5

Matrix Jacobi GS Schur Jacobi GS Schur CGLS!(+,!
1 3 2 2 3 2 1&a+,&
1 1 2 1 1 2 1e
2 6 2 4 6 4 0� x ��	� 1 2 1 1 2 1 0

� x �
1 1 0 1 1 1 05 x �
1 1 1 0 0 0 05 Y
0 0 0 1 1 1 0

Table 4.1: Summary of of matrix-vector products and solutions in each algorithm.
An inverse matrix implies a solution with the matrix as coefficient matrix. CGLS is
assumed to work on the regularized system. Initial work is not included.

Assuming that the cost of applying
!C+b!

is the dominant factor the opera-
tion count tells us that the improvement per iteration should be at least twice as
good as the standard CGLS algorithm in the case of Jacobi and Schur CG, while
GS must triple the improvement per iteration. Whether these requirements are
met or not is the subject of Section 6.8. The cost of

e
is the the subspace di-

mension � and would in a matrix implementation be
õ �% flops (floating point

instructions). The solutions with
���´�

and

�
both imply two backsubstitutions

of each � L — one of the reasons to keep the subspace dimension low.
Before the iterations can start it is necessary to perform a number of tasks:� The creation of

���	�
uses

é ��" � % - � � flops with dense matrix calculations.� The factorization of
� �´�

uses ��³ ã é flops if we choose a Cholesky factor-
ization.� The cost of creating

� ) eÌ+,&2+1&ne
depends on the dimension and the

sparsity of
&

—
&

is in most applications very sparse and the evaluation
of

�
can be neglected.� The factorization of

�
uses �\³ ã é flops using a Cholesky factorization.



4.4 A Theoretical Comparison 47� The factorization of
5 ) &a+1&

also depends on the sparsity of
&

and can
be neglected when using a QR factorization. The pseudo-inverse is also
obtainable from a QR factorization of

&
.

If
& ) 8 9

and the columns of
e

are orthogonal only the creation and factoriza-
tion of

���´�
remain because

� ) 8 

and

5 ) 8 9
.

4.4.2 Convergence Properties

Past experience (e.g. [2]) shows that a Gauss-Seidel preconditioner performs
better than a Jacobi preconditioner for most equation systems. In the follow-
ing we show that the Schur complement and Gauss-Seidel two-grid precondi-
tioned system both have better bounds on their condition number compared
to that of the Jacobi two-grid preconditioned.

Before we proceed we introduce two quantities, i j and il , that are impor-
tant to the convergence resultsikj ) J ! 7 J4´ ) J ! � µ$¶J·´ ) êe¸kë¹ A µº¶·»w¼ � ´ � J ! | J:LJ | J·´ A

(4.70)ikl ) J ! � J ´ ) J ! � ½ ¶ J ´ ) ê-¸�ë¹ A ½ ¶·»¿¾eÀ.Á J ! | J LJ | J·´ (4.71)

Intuitively (but not correctly) i l equals the largest singular value (the general
singular value if

& §) 8 9
) that has its vector in the subspace

� 

. Hence a sub-

space � 
 including the right singular vectors belonging to the large singular
values implies that ikl is small because only singular vectors with small sin-
gular values reside in

�m

. A geometric interpretation in three dimensions is

illustrated in Figure 4.2.

Jacobi Preconditioning

To find the condition number of the Jacobi preconditioned system we initially
construct the preconditioned matrix from (4.19) and (4.23) using the square
root of

7��Â ) 7 x �eÃ L� À e g Ä + ��À eÊg Ä 7 x �eÃ L�) £ � x �-Ã L�´� ;; ¸ ã M /,8Q9 x 
 ¤ £ ���	� ��� L� L � � L	L ¤ £ � x �-Ã L�´� ;; ¸ ã M /,8:9 x 
 ¤) ¢ 8 
 � x �eÃ L�´� ��� õ ã M /� L � � x �eÃ L�	� ã M / � L	L ã / £ � (4.72)

Now assume we know an eigenpair
� WÍA | � to (4.72) and let | )�À | + � | +L Ä + de-

note the block components corresponding to the given subspaces scaled such



48 Ill-Posed Problems and Conjugate Gradients

W

g
W

Figure 4.2: 3-D operator norm with restriction. The 3D unit ball (in
5

-norm to be
precise) is mapped onto an ellipsoid with semi-axes according to the singular vales of
the operator. The 2D subspace

�m

intersects with the ellipsoid in a ellipsis. The largest

semi-axis of this ellipsis equals the restricted operator norm
J ! � ½Ä¶J ) ikl , while the

distance from the origo orthogonal to the
��


equals i j .

that
J | L J L ) ¸ , implying that

J À e.g ÄÝÀ ; 
 > � | L Ä J4´ ) ¸
. For convenience we de-

fine ¾ ) e | � and
� ) g | L . Multiplying the system (4.72) with its eigenvalue

yields two equations

Â | ) ¢ 8 
 � x �eÃ L�	� ��� õ ã M /� L ��� x �-Ã L�´� ã M / � L´L ã / £ £ | �| L ¤) W |�W | � ) | � - � x �-Ã L�´� ��� L | L ã M / A (4.73)W | L ) � � L � x �-Ã L�´� | � ã M /�- � L´L | L ã / � (4.74)

Isolating | � in (4.73) and inserting the result into (4.74) gives

W | L ) � L ��� x �-Ã L�´� � x �eÃ L�´� ��� L/ � W c ¸ � - � L	L | L ã /)W � W c ¸ � | L ) � L � � x ��´� � � L ã / - � W c ¸ �X� L	L | L ã /



4.4 A Theoretical Comparison 49

Finally we premultiply with | +LW � W c ¸ � | +L | L ) | +L � L �:� x ��´� ��� L ã /�- � W c ¸ � | +L � L´L | L ã /�W L c W�)
Å - � W c ¸ � | +L � L´L | L ã /�- � W c ¸ � c � W c ¸ ��W L c W�)
Å - � W c ¸ � � | +L � L	L | L ã / c ¸ � - � W c ¸ ��W L c õ W - ¸ c ' � W c ¸ � c Å�)��kA
(4.75)

where ' and
Å

are short for' ) | +L � L	L | L/ c ¸ and
Åù) | +L � L � � x ��´� � � L | L/ �

(4.76)

Observe that (4.75) is a second degree polynomial where
W

is a root if
� WÍA | �

is an eigenpair. We will now find bounds for the possible roots of the poly-
nomial and as a consequence we also find an upper bound for the condition
number of

Â
.

First we find bounds for '' ) | +L � L´L | L/ c ¸) | +L � L´L | L c / | +L | L/) | +L � � L	L c /18:9 x 
 � | L/) � + ! + !��/) J !�� J LL/ç i Ll ã / A (4.77)

and because ' is non-negative we have the following bound� ç ' ç i Ll ã / �
Now we turn to

Å
. From (4.76) and the definition of the block decomposi-

tion we get Å ) | +L g +,!(+,!4e � x ��	� e½+,!(+b!4g | L/) � !4g | L � + � !4e � x ��	� eÌ+1!(+ � � !4g | L �/) � !4g | L � +�Æ � !4g | L �/ (4.78)



50 Ill-Posed Problems and Conjugate Gradients

where
Æ

is defined asÆ ) !4e � x ��´� e + ! +) !4e � e + ! + !4e -0/3e + 5Êe � x � e + ! +
(4.79)

Substituting2

� ) eÌ+b5 e
and Ç ) !4e � x �-Ã L p*r 9=sk


and using the
“insert the identity” trick simplifies equation (4.79)Æ ) !4e � x �-Ã L � �-Ã L � e + ! + !4e -0/ � � x � � �-Ã L � x �eÃ L e + ! +) !4e � x �-Ã L � � x �eÃ L e + ! + !4e � x �eÃ L -u/18 
`� x � � x �eÃ L e + ! +) Ç � Ç + Ç -w/,8 
`� x � Ç +

It is obvious that
� Ç + Ç -m/,8 � is SPD and we conclude that

Æ
is SPD. LetÇ ) D(E½G�+ be the SVD decomposition of Ç and consider the boundJ Æ J:L ) J Ç � Ç + Ç -w/18Q
 � x � Ç + J:L) J D(E G + � G�E L G + -0/18Q
 � x � G(EÌD + J:L) J D(E G + G � E L -u/18Q
 � x � G + G�EÌD + J:L) J E � E L -0/,8 
¶� x � E J L) J E � T\^]`_ � F L� -0/ �I� x � E J L) ¡¡¡¡ T\^]`_ Õ

F L�F L� -u/ Ø ¡¡¡¡ Lç ¸ �
(4.80)

Because
J Æ J L ç»¸

it follows that
� !4g | L � +�Æ � !4g | L � ç � !4g | L � + � !4g | L � .

Thus we obtain from (4.78) and (4.80) the bound� ç Å ç J Æ J L J ! | L J L ã / ç i Ll ã /
Finally we need to find a bound for '½c Å

. First use (4.77) and (4.78) to form'Öc Å ) � !4g | L � + � 8 9 c Æ � !4g | L ã / � (4.81)

The subtraction
8 9 c Æ

is rewritten with help from B.1 (in the appendix)8 9 c Æ ) 8 9 caÇ � Ç + Ç -0/,8 9=� x � Ç +) 8:9 caÇÄÇ + � ÇÈÇ + -u/18:9 � x �) 8 9 -u/18 9 � ÇÈÇ + -u/18 9�� x �c /18:9 � ÇÈÇ + -0/18:9 � x � caÇÄÇ + � ÇÈÇ + -u/18:9 � x �) 8 9 -u/18 9 � ÇÈÇ + -u/18 9�� x � c � /18 9 - ÇÄÇ + � � ÇÄÇ + -0/,8 9�� x �) 8:9�-u/18:9 � ÇÈÇ + -u/18:9 � x � c 8:9) /18 9 � ÇÈÇ + -0/,8 9=� x � A
2This substitution assumes ý to be SPD and invertible — otherwise we are forced to use the

same tricks to move É around as in (4.66) and (4.68) which would double the page-count of this
section.



4.4 A Theoretical Comparison 51

which in a combination of (4.81) and an eigenvalue decomposition of� ÇÈÇ & -u/18 �2)ËÊG ÊE L ÊG +
(written in terms of the SVD) and a temporary rewrite�f) ÊG�+,!4g | L yield'Öc Å ) � !4g | L � + � ÇÈÇ + -0/,8 9�� x � !4g | L) � !4g | L � + � ÊGÌÊE L ÊG + � x � !4g | L �) J � ÊG + !4g | L � + ÊE x L � ÊG + !4g | L � J LL) 9« ��¬ ��ÍF x L� � L�
º 9« ��¬ � ÍF x L� � L�) J ÊG�+1!4g | LÅJ LLJ ÇÈÇ + -u/18:9 JQL) J !4g | LÅJ LLJ ÇÈÇ + -u/18 9 J L � (4.82)

Now we have the basic bounds on
Å

and ' and it is possible to find bounds
on the roots of equation (4.75). We know ' and

Å
are nonnegative and an upper

bound is now easily found� W c ¸ � ) cµ'zÎ�Ï ' L ccÐ Åõ)W ç ¸ - ' - Ï ' L - Ð Åõç ¸ - ' - M Åç i Ll/ - iklM / - ¸ (4.83)

Likewise we find an lower bound for
W

W ) ¸ - '�Î�Ï ' L caÐ Åõº ¸ - ' - Ï ' L caÐ Åõ) ¸ - Ð Åõ � ' - Ï ' L ccÐ ÅÂ�º ¸ c Å') 'Öc Å' �
(4.84)



52 Ill-Posed Problems and Conjugate Gradients

and inserting the definitions of '�c Å
and ' gives'�c Å' ) J !4g | LSJ LL /J ÇÈÇ + -w/,8 9 J L J !4g | L J LL) /J ÇÈÇ + -w/,8 9 J L) /J Ç J LL -0/

The definition of Ç ) }de � x �eÃ L tells us ( Ñª ) � x �eÃ L ª
)J Ç J LL ) ê-¸këÒ A.ÓnÔ »¿¾eÀ.Á J }de � x �-Ã L
ª J LLJ ª J LL) êe¸këÕÒ A.Ó ¶ »¿¾eÀ.Á J }de Ñ

ª J LLÑª + � Ñª) ikj � (4.85)

The lower bound is now derived to beW º //�- i j A
and combined with the upper bound we find a condition number bound of the
Jacobi preconditioned systemOQPSR�T � Â � ç � i l ã /�- i l ã M /�- ¸ � � / - ikj �/ �

If
/

is small we get O:P¶R�T � Â �2)�Ö � / x L ��A /c× ¸ A
(4.86)

while a large
/

yields the estimationO:P¶R�T � Â �¨) ¸ - Ö � i l ã M / �:A / b i l
Here we get the first indication that the Jacobi method are unsuitable for our
purpose because the condition number in the usual case, a small

/
, is propor-

tional to
¸ ã / L

. The unpreconditioned system has a condition number propor-
tional to

¸ ã /
and should therefore converge faster.

4.4.3 Schur Complement Condition Number

The condition number of the Schur complement is of vital importance to Schur
complement CG. Later we will see that the Schur complement also finds its
way into the condition number of the Gauss-Seidel preconditioned system.



4.4 A Theoretical Comparison 53

We bound the condition number using bounds for the largest and smallest
eigenvalue of

¦
.

According to Axelsson [1, Theorem 3.8] we have for any
�ûp�r 9 x 


(a vector
in “Schur complement space”) the following equality� + ¦Í�f) \�R�Ø¹ A.Ó ¶ ð | + � + ò £ ���	�¹��� L� L � � L	L ¤ £ |� ¤ A
which combined with the definition of the transformed system (4.12)� + ¦®� ) \�R�Ø¹ A.Ó ¶ ð | + � + ò £ e½+g +Ê¤ ��À eÊg Ä £ |� ¤) \�R�Ø¹ A.Ó ¶ � | + e + - � + g + � � ! + !{-0/,5 � � e | -hg �,�®� (4.87)

We now introduce ¾ ) e | and
� ) g �

and (4.87) is simplified to� + ¦Í� ) \�R\ØÙ A µ ¶ � ¾ + -0� + � � ! + !{-0/15 � � ¾ -Ú� �) \�R\ØÙ A µº¶ * ¾ + ! + ! ¾ -0/ ¾ + 5 ¾ -¾ + ! + !�� -u/ ¾ + 5���-� + ! + ! ¾ -u/�� + 5 ¾ -� + ! + !���-0/�� + 5�� ,) \�R\ØÙ A µ ¶ * ¾ + ! + ! ¾ -0/ ¾ + 5 ¾ -¾ + ! + !�� - � -� + ! + ! ¾ - � -� + ! + !���-0/�� + 5�� ,) \�R\ØÙ A µ ¶ * � ¾ + -9� + � ! + ! � ¾ -0� � -0/ ¾ + 5 ¾ -0/�� + 5�� ,) \�R\ØÙ A µ ¶ * J ! � ¾ -Ú� � J LL -0/ J ¾ J L´ , -0/ J � J L´ � (4.88)

Because
J � J L´ )t� +3g +,5Êg �q)t� +18 9 x 
 �q) J � J LL

we conclude that
/

forms a lower bound for the eigenvalues of the Schur complement
¦

. An upper
bound is found by letting ¾ ) ; and choosing an arbitrary

�¼phr 9 x 

of unit

size, i.e.
J � J ) ¸

,� + ¦®� ) \�R�ØÙ A µº¶ ð J ! � ¾ -Ú� � J LL -0/ J ¾ J L´ ò¨-0/ J � J L´ç J !�� J LL -0/ J � J L´ç i Ll -0/ � (4.89)

The lower and upper eigenvalue bound yields the condition number esti-
mate OQPSR�T � ¦,� ç�¸ - i Ll/ � (4.90)



54 Ill-Posed Problems and Conjugate Gradients

Already at this point we see a significant advantage to the Schur complement
because the

/
in the nominator is not squared as in (4.86). From Axelsson [1,

Lemma 3.12] we also know that the Schur complement is guaranteed to have
a lower condition number than the system it is constructed from.

4.4.4 Symmetric Gauss-Seidel Condition Number

The condition number of the Gauss-Seidel preconditioned system is strongly
related to the equivalent of the Schur complement.

The symmetric Gauss-Seidel preconditioner can be reformulated into a block
Cholesky factorization7 y,z ) � �� -0& � �� x � � �� -0D �) � �� -0& � �� x �-Ã L �� x �eÃ L � ��.-u& � +) �È� + A
where � ) � �� -0& � �� x �-Ã L .

Combined with the block representation of
�

we get (cf. (3.21)) a matrix
with the same eigenvalues as the preconditioned systemÛ x � £ ���	� ��� L� L � � L	L ¤ Û x +)£ � x �eÃ L�´� ; 
 > 9 x 
c ¸ ã M / � L �:� x ��´� ¸ ã M /18 9 x 
 ¤ £ ���´� ��� L� L � � L´L ¤ £ � x �eÃ L�	� c ¸ ã M / � x ��	� � � L; 9 x 
 > 
 ¸ ã M /18Q9 x 
 ¤)£ 8 
 ; 
 > 9 x 
; 9 x 
 > 
 ¦1ã / ¤ A
where

¦
is the usual Schur complement (4.36). The preconditioned system has

the eigenvalues of
¦

divided by
/

plus a � -multiple eigenvalue
¸
. If

¸
lies in

the eigenvalue spectrum of
¦1ã /

we will have the same condition number as
for the Schur complement — in all other cases we will have a larger condition
number. From [1, Lemma 3.12] we have thatWNK�L Ò � ¦,� º WNK�L Ò � ���2) /�- F L9)W K�L Ò � ¦1ã / � º ¸ - F L9 ã / A
which implies that

¸
is outside the eigenvalue spectrum of

¦
— but still very

close in the usual case
/ v F L9 . The condition numbers of the Schur comple-

ment and the Gauss-Seidel system is therefore very close to each other.
Furthermore we know that clustered eigenvalues have a positive effect on

CG and the � extra eigenvalues can not be more clustered than they are.



4.5 Final Remarks 55

Summary on Condition Numbers

We have now derived upper bounds for the condition numbers of the three
methods. The results are summed in Table 4.2 and in Chapter 6 we will see if
the convergence behaves as predicted by these estimations.

Method Condition Number
Jacobi

� i Ll F L� �´ã / L
Gauss-Seidel

¸ - i Ll ã /
Schur Complement

¸ - i Ll ã /
No preconditioning F �Qã /

Table 4.2: Estimated condition numbers for each method. The regularization parame-
ter
/

is assumed to be small but larger than F L9 .
4.5 Final Remarks

All the previous methods work on the equation system
!C+,! - /1&2+1&

. The
preconditioners are constructed from this system and work on this system. We
have tried the variation of letting the preconditioner be based on the regular-
ized system but the actual system be the unregularized

!4+,!
. However this

renders the estimates derived in this chapter useless, but a practical approach
is still possible. Section 6.9.3 has results on this variation.



56 Ill-Posed Problems and Conjugate Gradients



C H A P T E R 5

Subspaces
Heavy use of the abstract notions of vector space and subspace in
a discussion of numerical methods may seem to some readers un-
necessarily abstruse. In fact, however, the language of subspaces
simplifies such discussions by suppressing distracting details. Par-
lett [25]

We have until now only scratched the surface of how to select the actual sub-
space splitting. In this chapter we discuss some choices of subspaces and ex-
pectations to their performance.

5.1 A Good Subspace

The discussion of convergence properties, in the previous chapter, showed that
a subspace created from the right singular vectors of the SVD is optimal, be-
cause i l is minimized. Furthermore we get a diagonal system which is easy
to solve. However, we do not have the SVD — if we had, the problem would
not be a problem and an iterative method would be utterly unnecessary.

The hope is that a subspace close to the SVD subspace will do almost as
good. In the treatment of ill-posed problems it was mentioned that the sin-
gular vectors often have an increasing number of zero-crossings as the index
increases. This observation will be used as a starting point.

5.1.1 Cosine and Sine

The most obvious choice of a more and more oscillatory basis must be a basis
created by sine and cosine functions with increasing frequency. This choice
implies that

À e g Ä
turns into a discrete Fourier transform (DFT) and the trans-

posed
À eÊg Ä +

takes the form of the inverse discrete Fourier transform (IDFT).
An added bonus is that the projection to and from the subspace � 
 can

be obtained efficiently from the well known fast Fourier transform (FFT). In
the experiments section we have not used the FFT approach but the “naive”
matrix-vector multiplication approach. The complexity of a FFT is

Ö � %�Ü P¶_ % �



58 Subspaces

while a matrix-vector transformation takes
õ ��% flops and the choice between

the two methods depends on the exact hidden coefficient in the
Ö

-notation
(which changes from implementation to implementation) and the subspace
size � . The FFT implementation in Matlab assumes % to be a power of two
although algorithms for other % exist [21] and is therefore not suited for a gen-
eral implementation of our methods.

5.1.2 Chebyshev Polynomials

During the discussion of CG convergence Chebyshev polynomials were used
because their absolute value is less or equal to one in the interval

À c ¸ M ¸ Ä . The
Chebyshev polynomials reappear in this chapter because they also have in-
creasingly many zero-crossings as the order of the polynomial increases. One
way of calculating the � th Chebyshev polynomial is6 
 � ~ �2) O:P ê � � ]¶O:P ê � ~ �I�®�
We note that a Chebyshev polynomial can be viewed as a cosine function with
an abscissa stretched such that the function appears as a polynomial. Hence
we expect a basis constructed from Chebyshev polynomials to do similar to a
cosine/sine basis.

5.1.3 Wavelets

A cousin of the Fourier transform is the wavelet transform [4] [23] which has
many similar properties but also a few differences compared with the Fourier
transform. A wavelet basis is described by two functions (the scaling and the
mother wavelet function), and a basis is obtained by translating and resizing
these functions. A wavelet can have “local” oscillation whereas a sine or cosine
oscillate throughout the entire interval. Many families of wavelets exist but we
have only considered the well known Daubechies family.

A nice similarity to the cosine/sine basis is the possibility of a fast trans-
forms, the fast (inverse) wavelet transform FWT and IFWT. The flop count for
a fast (inverse) wavelet transform is Ð$Ý�% where Ý , the genus, is an even inte-
ger characterizing the length of a filter. The (I)FWT requires % to be a power
of 2, but unlike FFT it is unclear whether fast transforms exist for other prob-
lem sizes. The package made by Ole Møller Nielsen (OMN) [23] contains code
to make Daubechies wavelets of genus 2 to 50. A visual inspection, see Fig-
ure 5.1 for some examples, shows that the wavelets look more like a piece of
sine or cosine when the genus is large, while a lower genus gives less smooth
functions. Hence we expect that a large genus will yield better results than a
smaller genus, but considering the added costs a reasonable tradeoff should be
chosen. Whether we actually gain good results (and for which genus) in terms
of convergence etc. are the topic of Section 6.7.

The wavelets in Figure 5.1 are all the the “mother wavelet” ( Þ � � ~ � in OMN
thesis) constructed by a wavelet transform of a vector with zeros in all places



5.1 A Good Subspace 59

50 100 150 200 250
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(a) Genus: ßaà�á (Haar wavelet).

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) Genus: ß�àãâ .

50 100 150 200 250
−0.1

0

0.1

(c) Genus: ß�à�ä .

50 100 150 200 250
−0.1

0

0.1

(d) Genus: ß�àcå-æ .

Figure 5.1: Shape of Daubechies wavelets (the mother wavelet) with different genus.
A high genus yields a “smooth” wavelet but oscillations increase. The downside is a
more expensive fast transform.



60 Subspaces

except for a one in the second. We now freeze the Genus ( Ý ) õ
) and plot

the fifth to the eight wavelet ( Þ L > � � ~ � to Þ L > ³ � ~ � ). Figure 5.2 shows that all
four wavelets are necessary to hold information over the hole interval. The
next “batch” of wavelets holds 8 wavelets because they have half the width
( Þ ³ > � � ~ � to Þ ³ > ç � ~ � ). The more “batches” we include the finer details can be
approximated, but incomplete batches are likely to be unable to approximate
in certain parts of the given interval. Hence we suspect that a wavelet basis
should be chosen such that the dimension is 2, 4, 8 or another power of two.

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(a) One in 5th place.

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) One in 6th place.

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(c) One in 7th place.

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(d) One in 8th place.

Figure 5.2: Shapes of Daubechies ( Ý ) õ ) wavelets at same scale. Multiple wavelets
are necessary to describe information on the hole interval.

In order to test the efficiency of the wavelet transform a special version of
Schur complement CG has been developed that utilizes OMN’s package, see
Appendix A.5.1.



5.2 Two Dimensional Deconvolution 61

5.1.4 Lanczos Vectors

The Wavelet and Fourier choices for subspace transformations adhere to the
idea of imitating the normal behaviour of the singular vectors. The Lanczos
vectors [7] are a collection of orthogonal vectors that span the Krylov space
made from the problem in question. These vectors are known to approximate
the vectors of the largest eigenvalues. Hence it is expected that a subspace
spanned by Lanczos vectors is a good choice. The use of Lanczos vectors gives
birth to an “bootstrap” idea because the Lanczos vectors are easily extracted
from the CG-algorithm. The idea is to incrementally increase the subspace � 

as the iterations are performed and the Lanczos vectors are generated. This
idea seems promising until one considers two factors:

1. CG minimizes the error
J ��� 
 � J:N in the Krylov space

@ � �CAIonA � � (assuming
infinite precession) at each step.

2. The Lanczos vectors span the exact same subspace as the Krylov space@ � �4AIonA � � . If the columns of
e

span the very same subspace
@ � �4AIonA � �

then
e � x ��	� eÌ+ � computes a correction that minimizes the error, restriced

to the Krylow space, but this time in the 2-norm.

If the
�

-norm and 2-norm are almost equal preconditioning will not improve
results greatly. However, this thought is examined in Section 6.7, where an
experiment shows that the Lanczos vectors are a good choice for the particular
test problem despite the arguments expressed here. Hence it it could prove
valuable to follow the bootstrap idea further.

5.1.5 Simulated Singular Vectors (regutm)

The REGULARIZATION TOOLS package [17] includes a function to create ran-
dom test problems where the singular vectors behave as if they were from an
ill-posed problem. Among the return values are the singular vectors of this
random problem which then could be used on a different problem. This ap-
proach should only be used for small problems as it involves calculating an
SVD.

5.2 Two Dimensional Deconvolution

The previous subspaces do not suit a two dimensional problem very well.
In this section, an adaption of [14, Chapter 6], we take a look at the two-
dimensional convolution problem��� # ��~è } � ~ AI��A É~ A É�k�X� É~ � É��)êé � ~ A	�k��A

(5.1)

where the kernel
}

has the form} � ~ A	��A É~ A É��¨)�Z � ~ c É~ � Wï� � c É���A (5.2)



62 Subspaces

where
Z

and
W

are functions (the variables separate).
This problem can, when discretized, be formulated using a Kronecker prod-

uct. A Kronecker product of two matrices
�qp(r < s9

and

§�qp�rlë< s ë9
is defined

as � U §�þ) 1ììì2 � � > � §� � � > L §� HQHÃH � � > 9 §�� L > � §� � L > L §� HQHÃH � L > 9 §�
...

...
. . .

...� <ï> � §� � <ï> L §� HQHÃH � <ï> 9 §�
34ííí5 p(r � < ë< � s � 9 ë9 � � (5.3)

The usefulness of the Kronecker product is apparent if we consider some
of the important algebraic rules for the Kronecker product� � U0î � + ) � + U9î + A (5.4)� � U9î � x � ) � x � U0î x � A (5.5)� � U0î � Z¶[ O � ¡ � ) ZS[ O � î + ¡ � + ��A (5.6)� � U9î � � � U � � ) � � � � U � î � �:A

(5.7)

where the function ZS[ O �XH � stacks the columns of the argument matrix. Equation
(5.6) can give great savings in terms of both calculations as well as memory.
Assume that

�þ) î p(r 9=sk9 . Then a naive multiplication
� � Uïî � ZS[ O � ¡ � takesõ % æ flops (assuming that

� U�î is already calculated), while the calculation� ¡ î only uses ÐS%ð³ flops — a great saving. In addition the Kronecker product
matrix is much larger than the two creators.

All previous work has been working on one-dimensional data, and in order
to treat two-dimensional data in form of a matrix we must reshape the data
into a vector. The standard procedure is to stack the 2-D data columnwise.
Assuming we have the discretizations

!f�
and

! L
of

Z
and

W
respectively, we

are able to describe the convolution using a Kronecker product� !4� U ! L � Z¶[ O � ¡ �2) ZS[ O � î ��A
and using (5.6) we get ! L ¡ ! + � ) î � (5.8)

Secondly we have to realize how the singular vectors of the Kronecker
product are connected to the singular vectors of the two kernels. A simple
calculation involving the SVD of

! � ) D � E � G�+� and
! L ) D � E � G�+L

and (5.7)
proceeds as follows! � U ! L ) � D � E � G + � � U � D L E L G +L �) � D � U D L � � � E � G + � � U � E L G +L � �) � D(� U D L � � EË� U E L � � G + � U G +L ��� (5.9)

Equation (5.9) reveals that the singular vectors of a Kronecker product them-
selves are the result of a Kronecker product. Hence a subspace generated by



5.2 Two Dimensional Deconvolution 63

means of a Kronecker product of two suitable 1-D singular vector approxima-
tions as those previously described could prove useful.

The application of the convolution operator is implemented efficiently us-
ing (5.8), but we have not exploited the Kronecker product to its fullest yet. The
transformation to and from � 
 is easy when

e ) eË� U e L . The transformation�f) e + K
is Z¶[ O ��ñ � ) � eË� U e L � + Z¶[ O � ¡ ��ñ ) e +L ¡ e � A

and the “reverse operation” isZS[ O � ¡ � ) � e � U e L � ZS[ O �gñ ��¡ ) e L ñ e + � �
Finally the creation of

���´�
goes without any surprises� �	� ) e + ! + !4e�-0/3e + & + & e) � e + � U e +L � � ! + � U ! +L � � !4� U ! L � � eË� U e L � -0/3e + & + &ne) � e + � ! + � !4�QeË� � U � e +L ! +L ! L e L � -0/µe + & + &ne (5.10)

However, even if we require
&

to be a Kronecker product there is no easy way
of inverting (5.10) because of the addition. Hence it is necessary to compute���´�

explicitly.
A possible work-around is to forget

/µeÌ&a+1&ne
and just use the first term�� �´� ) � eÌ+� !(+� !4�ÃeË� � U � eÌ+L !(+L ! L e L � . If the subspace is selected correctly, that

is from the SVD of the kernels, the same arguments used to delete
g(+b!(+1!4g

from
� L	L

(Section 4.2.1) can be used again, albeit “reversed”, because we now
hope for F L
 v / . With this simplification and (5.5) we get� x ��´� Z¶[ O � ¡ �ò` �� x ��´� ZS[ O � ¡ �2) Z¶[ O � � e +L ! +L ! L e L � x � ¡ � e + � ! + � !4�QeË� � x � �
The approximation gives savings in both the initialization phase and in each
iteration. Assume that � is the number of columns of both

eÖ�
and

e L
. Then the

cost of a factorization of the Kronecker factors is
Ö � �N³ � , while a factorization

of the Kronecker product has the complexity
Ö � �Nó � . When solving a system

with one of the Kronecker factors the cost is
Ö � � L � , while the cost of solving a

system with the Kronecker product is
Ö � � æ � .

Appendix A.6.1 shows an implementation of a Schur complement CG suited
for 2-D problems of the type just presented and in Section 6.9.1 we present the
result of a simple experiment including an example on whether the discussed
simplification has any noticeable influence.



64 Subspaces

N-Dimensional Problems

We have taken the first step towards n-dimensional problems. It does not take
much fantasy to expand the 2-D techniques to 3 dimensions. However we need
a new type of matrix with 3 dimensions that can be multiplied from the usual
left and right but also from above (or below). This extension or generalization
of matrices is known as tensors — a subject outside the scope of this thesis.
The test problems include one 3-D problem but we do not utilize the obvious
extension of the Kronecker product rules to 3 dimensions. Instead we use the
usual matrix-vector approach.



C H A P T E R 6

Numerical Experiments
“There are three principal means of acquiring knowledge (...) ob-
servation of nature, reflection, and experimentation. Observation
collects facts; reflection combines them; experimentation verifies the
result of that combination.” Denis Diderot, French philosopher
(1713-1784).

Numerical experiments with the previously described algorithms and their
parameters are presented in the following. The methods are compared to the
standard CGLS from REGULARIZATION TOOLS [17].

With the many parameters, test problems etc., it is impossible to cover all
aspects. With this chapter we have covered what we find most important and
relevant. In the following we have abbreviated the Gauss-Seidel precondition
equation system to GS and Schur complement CG is shortened Schur CG. Any
reference to a subspace or a basis refer to the the subspace or basis spanned by
the columns of

e
. Furthermore a SVD basis denotes a basis derived from the

kernel of the problem of current interest. Other bases refer to Chapter 5. We
have unless otherwise stated used the regularization matrix

& ) 8Ã9
.

6.1 The Test Problems

We have selected a number of test problems in order to test and compare
the presented algorithms. Three problems are taken from REGULARIZATION
TOOLS and they possess the role of the small problems. The selected prob-
lems all have the property that the singular values do not decay fast towards
zero, i.e., they do not have ten singular values above machine precision and
the rest around the machine precision. Thus CG converges slowly which gives
a preconditioner a possibility to improve the situation. To complement the
REGULARIZATION TOOLS problems, two “real world” problems, both of con-
siderable size, are treated. Now follows a short description of the problems.



66 Numerical Experiments

heat: Inverse heat transfer

This particular 1-dimensional problem is taken from [17]. It is a discretization
of a Volterra integral equation of the first kind. Hence the kernel is

} ��� A	�I�Æ)� ��� c �I� , where � � �I�2) � x ³ Ã Lõ Z M ô [ > ë Õ c ¸Ð Z L � L Ø �
The constant

Z
describes the heat conducting capabilities of the material ob-

served. A large constant (
Zõ`÷ö

) yields a well-conditioned matrix, while a
small (

Z^` ¸
) gives an ill-conditioned matrix. We have in all experiments usedZí) ¸

unless otherwise stated.
Figure 6.1 shows the Picard plot and a plot of the solution and the corre-

sponding right-hand side. Note that the singular values decay slowly and we
must expect a slow convergence from an unpreconditioned CG method. This
makes heat our primary test problem. In addition we note an drop of the sin-
gular values at the end — a sign of rank deficiency. However, the effective
condition number is approximately

¸ �$ø
.

50 100 150 200 250

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(a) Picard plot.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Heat; solution and right hand side

Solution
Rhs     

(b) Solution and right-hand side.

Figure 6.1: Profile of test problem heat. The Picard plot shows a slow decay of the
singular values and a drop in the very end, where F Leù �`AQ�Q�Ã�QA F L�ù ó × ¸ � x � ó , i.e., the
problem is rank deficient.

deriv2: Computation of the Second Derivative

Also from [17] we have picked deriv2. This test problem is based on a dis-
cretization of a Fredholm integral equation with the kernel} ��� A	�I�¨) · �Å� � c ¸ � ��� �� ��� c ¸ � � º � �



6.1 The Test Problems 67

50 100 150 200 250
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(a) Picard plot.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Deriv2; solution and right hand side

Solution
Rhs     

(b) Solution and right-hand side.

Figure 6.2: Profile of test problem deriv2. The Picard plot shows a slow and smooth
decay of the singular values.

Figure 6.2 shows the Picard plot and a plot of the solution and right-hand
side. Observe that the singular values decay slower than those of heat and that
we do not have rank deficiency. The condition number is approximately

¸ � ù
,

i.e., less than the effective condition number of heat. Therefore we expect faster
convergence for deriv2.

blur: Inverse atmospheric turbulence blur

This test problem is also from [17] and it is our first 2-dimensional problem.
The system models the degradation of images by atmospheric turbulence blur.
To be more specific a Gaussian point-spread function is usedú ��û ~ A û ��a) ¸õ ô F L [ > ëCÕ c û ~ L - û � Lõ F L Ø A
which describes how the energy at a pixel is smeared. A large F spreads the
energy more than a small F . Thus a large F yields a more ill-conditioned sys-
tem.

This problem is selected because it is constructed using a Kronecker prod-
uct of a kernel

!
with itself. Therefore we can use the approach from Section

5.2 with the possibility of solving much larger problems.
Figure 6.3 shows the Picard plot, the sharp image (the solution) and the

blurred image (the right-hand side) of a small problem. Furthermore we see a
plot of the singular values of the kernel

!
.

geomig: Geophysical Migration

This test problem is kindly provided by Yann-Hervé De Roeck. The problem
is described in detail in [30]. Basicly the problem is to determine where layer



68 Numerical Experiments

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

i

Picard plot

σ
i
         

|u
i
Tb|         

|u
i
Tb|/σ

i

(a) Picard plot.

0 2 4 6 8 10 12 14 16
10

−1

10
0

i

σ i

(b) Singular values of “subkernel”.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(c) The sharp unblurred solution.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(d) The blurred right-hand side.

Figure 6.3: Profile of test problem blur. The Picard plot shows an well-conditioned
system with O:P¶R�T � ! U ! �ü` é � . In this example we have used F )��k��ý .



6.1 The Test Problems 69

boundaries are situated in the soil — very usefull when searching for oil.
The problem used for investigation has a matrix

! p r � L �e����� s ø L ø ó with
approximately

ý�� þ H ¸ � ó non-zeros1. The matrix acts on a vector originating
from a

¸ � ¸ #'ÿ ö grid stacked columnwise. That is we have a two dimensional
problem.

The right-hand side is generated from a simulated solution, see Figure
6.4(a), and the provided matrix. The geometry of the physical model yields
zero columns in the system matrix which means that some elements are not
recoverable through inversion. Figure 6.4(b) shows the solution with the unre-
coverable parts deleted.

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

(a) Reflectivity.

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

(b) Reflectivity possible to reconstruct.

Figure 6.4: Solution to the geophysical migration problem.

vesuvio: Inversion of Geomagnetic Data

The final test problem is provided by Valeria Paoletti. The problem models
the connection between the magnetic field below the earth surface and mea-
surements taken above the surface. The solution domain is a cube (below the
surface) discretized with grid of size

¸ � # ¸ � # ¸ � , while the measurements
domain is a grid of size

¸ � # ¸ � # ¸ � (corresponding to measurements in 10
layers above the surface). The results is a dense system matrix

! p�r � ����� s=� ����� .
The equation system is “almost” a result of a Kronecker product, that is the
mathematics tells us that it is not a Kronecker product but an estimation of the
SVD shows very Kronecker like properties. The problem is described in detail
in [6].

We have used simulated data for this experiment and the right-hand side
is generated using a multiplication with the system matrix and the simulated
solution. The solution is a

é # é #�Ð block placed 3 units below the surface. This

1Using a convolution with a signal of length 3, i.e., the problem is in difficulty between problem
1 (length 1) and problem 1” (length 9) of [30].



70 Numerical Experiments

particular placement is chosen because information below the top most layer
is known to be hard to reconstruct with the standard CGLS method.

6.2 Initial Comparison

The theoretical condition number bounds from Table 4.2 suggest that the Jacobi
preconditioner is inferior to GS and Schur CG. We have tested this hypothesis
on the test problem heat.

6.2.1 Condition Numbers

Even though the condition number does not tell the entire truth about the con-
vergence it still carries information on what to expect — and it is easier to
estimate than all eigenvalues. Furthermore the results are only influenced by
the system matrix and not by the solution or the right-hand side. Hence we are
able to conclude on a more general level. The actual convergence depends on
both the singular values and the right-hand side coefficients, cf. Section 3.2.

We concentrate on the influence of
/

and the subspace dimension on the
condition number of the preconditioned systems. We have chosen heat because
the condition number of the unpreconditioned and unregularized system is
huge. Thus we will see an effect of applying regularization even for very small/

. We only compare the optimal SVD basis with the regutm basis. Similar
comparisons of other subspace selections are postponed to Section 6.7.

Varying
/

The variation of
/

influences both the regularized system and the precondi-
tioner. Figure 6.5 shows the condition number as a function of

/
using an SVD

basis and a regutm basis. The condition numbers are equal for the Jacobi and
GS method if an SVD basis is used. Furthermore we note an improved con-
dition number compared to the unpreconditioned system. However, turning
to the suboptimal subspace, we see that the Jacobi preconditioner is very sen-
sitive to the selected subspace and becomes worse than the unpreconditioned
system. Both GS and Schur have higher condition numbers compared to those
obtained with the SVD basis, but they are still better conditioned than the un-
preconditioned system. The condition number of

���´�
is included because its

inverse is used in all iterations. Because F Ló æ ` õ H ¸ � x��
(64 is the subspace

dimension) the condition number of
� �´�

is only influenced when
/ º ¸ � x�� ,

where the regularization also influences the larger singular values. In addition
the lower singular values have been “eliminated” yielding condition numbers
of approximately

¸
for Jacobi, GS and Schur CG.

If a suboptimal basis is used we the influence of
/

on
���´�

is visible for
smaller

/
and the initial level (that is for very small

/
) the condition num-

ber is larger. The suboptimal subspace in this case also includes components



6.2 Initial Comparison 71

from right singular vectors corresponding to smaller singular values, that isF ó ù AÃ�Q�Q�ÃA F 9 . Thus we get an effect on the condition number of
���´�

also for/ � F Ló æ . Furthermore the complementary subspace spanned by
g

now also
spans components from larger singular values and the condition numbers of
GS and Schur go slower to zero as the regularization parameter

/
increases.

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

10
12

α

A    
A11  
Schur
J    
GS   

(a) SVD basis. Jacobi condition number is
hidden behind the GS condition number.

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

10
12

α

A    
A11  
Schur
J    
GS   

(b) regutm basis.

Figure 6.5: Condition number as a function of
/

. The subspace dimension is locked at
64.

Subspace Dimension

We know the condition number of preconditioned systems depends on i l )J ! � ½ ¶J·´
, which in turn depends on the subspace dimension. We now freeze/

and change the dimension of the coarse subspace � 
 .
Figure 6.6 shows the condition number changes as more and more vectors

are used for the coarse subspace. We see the obvious result that the condition
number of the the preconditioned systems and the Schur complement all are 1
when � 
 spans the entire space. But at the same time

� �´�
have the condition

number of the unpreconditioned system, because it is the unpreconditioned
system (modified by a similarity transformation). At the other end a very small
subspace (

¸
–
¸ �

dimensions) does not gain much and seems in this case that a
subspace dimension of, e.g.,

¸ �
would be appropriate, because the condition

of
���´�

is still limited. If we compare the two types of bases we see the SVD
basis performs better than the basis extracted from regutm. Especially the Jacobi
preconditioner suffers from the non-SVD subspace and the condition number
is worse than that of the unpreconditioned system — even for large subspace
dimensions. Finally we observe that the Schur complement is slightly better
conditioned than GS. These practical observations comply with the theoretical
observations in Section 4.4.



72 Numerical Experiments

50 100 150 200 250
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Subspace dimension

co
nd

(⋅)
A  
A11
S  
J  
GS 

(a) SVD basis. Schur, GS and Jacobi are
equal.

50 100 150 200 250
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Subspace dimension

co
nd

(⋅)

A  
A11
S  
J  
GS 

(b) regutm basis.

Figure 6.6: Condition number as a function of subspace dimension. Test problem heat
with

/ ) ¸ � x�� implying OQPSR�T � � �z` éÈH ¸ �ºø
. Notice that Jacobi preconditioning is

very sensitive to the subspace selection.

6.3 Eigenvalue Distribution

We have now seen how the two extreme eigenvalues behave for our meth-
ods. How do the non-extreme eigenvalues change when preconditioning is
applied?

Figure 6.7 shows the distribution of eigenvalues of the regularized system
and of the two preconditioned systems. GS and Jacobi “share” many eigenval-
ues but at the ends Jacobi has a couple “running off”. Hence the larger condi-
tion number of the Jacobi preconditioned system. GS does not have these and
is furthermore better conditioned than the unpreconditioned system. Compar-
ing the left and right plot we see that a higher dimensional subspace creates
more eigenvalues

W�) ¸
for GS, i.e., higher clustering, in addition to the better

conditioning. This complies with the fact that GS should have the exact same
eigenvalues as Schur CG (divided by

/
) plus a � -multiple eigenvalue 1. Ta-

bles 6.1 and 6.2 display the largest and smallest eigenvalues of the considered
systems and the tables confirm the predictions from Section 4.4, that is the
condition number of the Jacobi system is approximately that of GS or Schur
squared.

6.4 Convergence

We now turn to the actual convergence of our methods. We expect GS and
Schur CG to perform equally well and Jacobi to perform worse than the un-
preconditioned system when using a non-optimal subspace.

Figure 6.8 shows the convergence for Jacobi, GS and Schur CG with the



6.4 Convergence 73

0 10 20 30 40 50 60 70

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

λ i

i

A    
J    
GS   
Schur

(a) 8-D subspace.

0 10 20 30 40 50 60 70

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

λ i

i

A    
J    
GS   
Schur

(b) 32-D subspace.

Figure 6.7: Eigenvalues for regularized system and preconditioned regularized sys-
tems. Regularization parameter

/ ) ¸ � x ø
and subspace generation by regutm. The

problem is heat with % ) è Ð . The eigenvalues of the Schur system is shifted to the
right such that the similarities to GS become apparent.

W K�L Ò W K Ð	ß OQPSR�T �IH �� ¸ � �¶� H ¸ � x ø ¸ � õ ý H ¸ � x � ý�� þ èkH ¸ �ºø
Jacobi

¸ � Ð ý H ¸ � x�æ ý�� ¸ èkH ¸ � ù õ � � èkH ¸ � � �
GS

¸ � �¶� H ¸ � � ¸ � �$ý H ¸ � ù ÿ � õ èkH ¸ � ó
Schur

¸ � �¶� H ¸ � x ø ¸ � �$ý H ¸ � x ³ ÿ � õ èkH ¸ � ó
Table 6.1: Largest and smallest eigenvalues of regularized and preconditioned system.
Regularization parameter

/ ) ¸ � x ø
and 8 dimensional subspace created by regutm.

The problem is heat with % ) è Ð .

W\K�L Ò W\K Ð	ß OQPSR�T �IH �� ¸ � �S� H ¸ � x ø ¸ � õ ý H ¸ � x � ý�� þ è�H ¸ �Bø
Jacobi

¸ � é ÿ H ¸ � x ³ ¸ � é þ H ¸ � ù ¸ � �S� H ¸ �Bø
GS

¸ � �¶� H ¸ � � õ � õ ÿ H ¸ � L Ð � éSè�H ¸ � ³
Schur

¸ � �¶� H ¸ � x ø õ � õ ÿ H ¸ � x ó Ð � éSè�H ¸ � ³
Table 6.2: Largest and smallest eigenvalues of regularized and preconditioned system.
Regularization parameter

/ ) ¸ � x ø
and 32 dimensional subspace created by regutm.

The problem is heat with % ) è Ð .



74 Numerical Experiments

optimal 32 dimensional SVD basis compared to standard CGLS. This optimal
choice of subspace gives the methods best possible conditions. We see that
Jacobi and GS performs equally as we had expected, cf. Section 4.2.3. Schur
CG has a better initial error than the two preconditioners, but GS and Ja-
cobi quickly catch up. However, Schur CG diverges when it has achieved its
best possible precision after 24 iterations indicating that a stopping criteria is
strongly needed. This fact contradicts theory and indicates that something is
wrong with the theory or the implementation2. The residual plot shows how
this criteria easely could be implemented by monitoring the residual. Figure
6.9 shows the results of a similar experiment with the test problem heat. Due to
a higher condition number the convergence is slower for all methods, but the
the precondtioned methods still perform better. Jacobi seems to be a bit slower
than GS and Schur CG.

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

R
el

at
iv

e 
er

ro
r 

||x
α −

 x
(i)

|| 2 / 
||x

α|| 2

i

CGLS 
J    
GS   
Schur

(a) Relative error.

0 5 10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

R
es

id
ua

l

i

CGLS 
J    
GS   
Schur

(b) Residual.

Figure 6.8: Convergence for problem deriv2 with Jacobi, GS, Schur CG and CGLS on
regularized system with

/ ) ¸ � x ø . The subspace is a 32-dimensional SVD basis.

We have in Figures 6.8 and 6.9 used the optimal subspace obtained from
an SVD. If we now switch to a subspace obtained from regutm, we get Figures
6.10 and 6.11. Schur CG and GS show approximately the same convergence
speed as with the optimal subspace and the initial error levels are also nearly
the same. Jacobi on the other hand starts out with a much larger initial error
and it takes many iterations before the final result is achieved.

6.5 The Regularization Parameter �
The choice of the regularization parameter

/
is not easy and will not be dis-

cussed in this thesis with this section as an exception. Here we take a look at
the consequences of choosing a non-optimal

/
with respect to the true solution.

Hence we will in this section experience semiconvergence, cf. Section 4.1.
2This problem is discussed in the Appendix A.1



6.5 The Regularization Parameter
/

75

0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

R
el

at
iv

e 
er

ro
r 

||x
α −

 x
(i)

|| 2/||
x α|| 2

i

CGLS 
J    
GS   
SCHUR

(a) Relative error.

0 5 10 15 20 25 30 35 40 45 50

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
es

id
ua

l

i

CGLS 
J    
GS   
SCHUR

(b) Residual.

Figure 6.9: Convergence for problem heat with Jacobi, GS, Schur CG and CGLS on
regularized system with

/ ) ¸ � x ø
. The subspace is a 32-dimensional SVD basis.

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

R
el

at
iv

e 
er

ro
r 

||x
α −

 x
(i)

|| 2 / 
||x

α|| 2

i

CGLS 
J    
GS   
SCHUR

(a) Relative error

0 5 10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

R
es

id
ua

l

i

CGLS 
J    
GS   
SCHUR

(b) Residual

Figure 6.10: Convergence of Jacobi, GS, Schur CG and CGLS for regularized system.
Subspace extracted from the regutm function (32 dimensional).

/ ) ¸ � x � � .



76 Numerical Experiments

0 5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

R
el

at
iv

e 
er

ro
r 

||x
α −

 x
(i)

|| 2/||
x α|| 2

i

CGLS 
J    
GS   
SCHUR

(a) Relative error

0 5 10 15 20 25 30 35 40 45 50

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
es

id
ua

l

i

CGLS 
J    
GS   
SCHUR

(b) Residual

Figure 6.11: Convergence of Jacobi, GS, Schur CG and CGLS for regularized system.
Subspace extracted from regutm (32 dimensional).

/ ) ¸ � x � � .
Figure 6.12(b) shows the convergence of the two-grid methods with an op-

timal
/

along with the convergence of the CGLS on the unregularized prob-
lem. The optimal regularization parameter

/
is estimated by calculating 200

Tikhonov regularized solutions and picking the one with the smallest error,
see Figure 6.12(a). Other approaches include the L-curve criteria and general-
ized cross-validation [16, Chapter 7]. The unregularized CGLS method does
not obtain a result better than Schur CG or GS within 64 iterations. Schur CG
achieves a better result than the other methods. Furthermore we observe that
Schur CG has a much lower initial error and that GS converges faster than
CGLS. Jacobi looses all signs of convergence within the plotted iterations and
seems very sensitive to noise — after 400 iterations Jacobi finally reaches the
same level as GS and Schur CG.

We now consider the case where
/

is chosen smaller than the optimal. This
choice seems wise as we know CG has an regularizating effect which now
is used together with the regularization we enforce throug

/
. Figure 6.13(a)

shows the convergence with an
/

smaller than the optimal. Schur CG has the
expected semi-convergence before the method finds the regularized solution.
GS on the other hand does not show semiconvergence before finding the reg-
ularized solution and Jacobi does (again) not converge within the observed
number of iterations. Figure 6.13(b) shows the complementary case with an

/
chosen to large. In this case the regularized methods except Jacobi converge
fast but the solution is overregularized while CGLS is able to obtain a better
solution. In all cases Jacobi takes a detour of nearly 400 iterations before it
finds the regularized solution.



6.5 The Regularization Parameter
/

77

10
−15

10
−10

10
−5

10
0

10
−2

10
−1

10
0

10
1

10
2

||x
α −

 x
*  ||

2 / 
|| 

x*  ||
2

α

(a) Error for Tikhonov solutions with dif-
ferent ü . Optimal error marked with circle.

5 10 15 20 25 30 35 40 45 50

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e 
er

ro
r:

 ||
 x

*  −
 x

(i)
 ||

 / 
|| 

x*  ||

i

CGLS    
Jacobi  
GSCG    
Schur CG

(b) Convergence with optimal ü .

Figure 6.12: Convergence of heat with respect to the true solution. The regulatization
parameter

/ ` õ � énH ¸ � x ø and the subspace is a 16-dimensional and created by regutm.
CGLS works on the unregularized problem.

5 10 15 20 25 30 35 40 45 50

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e 
er

ro
r:

 ||
 x

*  −
 x

i ||
 / 

|| 
x*  ||

i

CGLS    
Jacobi  
GSCG    
Schur CG

(a) Convergence with üÈà�ü����	��
�å����� .

5 10 15 20 25 30 35 40 45 50

10
−2

10
−1

10
0

10
1

10
2

R
el

at
iv

e 
er

ro
r:

 ||
 x

*  −
 x

i ||
 / 

|| 
x*  ||

i

CGLS    
Jacobi  
GSCG    
Schur CG

(b) Convergence with üÈà�å������ü������ .
Figure 6.13: Convergence of heat. The 16-dimensional subspace is created by regutm.
CGLS works on unregularized system.



78 Numerical Experiments

6.6 Filter Factors

The filter factors (Section 2.2.1) tell which “Fourier components” that are found
in terms of the SVD. The plots include the Tikhonov filter factors that both
CGLS (on the regularized system) and Schur CG should converge towards.
In Figure 6.14 we see the convergence using a SVD basis. Schur CG has af-
ter the first iteration found the components belonging to the first 8 singular
values, while GS has the same components but on a constant lower level. At
all iterations Schur CG performs better than GS, which in turn seems better
than CGLS, in the sense that more SVD components are included in the case of
Schur CG.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(a) Iteration 1.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(b) Iteration 8.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(c) Iteration 32.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(d) Iteration 64.

Figure 6.14: Filter factors for deriv2. Subspace from SVD with dimension 8.
/ )¸ � x � � which means filtering for the singular values F � ç ¸ � x ù

indicated by the
Tikhonov filter factors. Noise with standard deviation

¸ � x ø J o J:L
is added to

o
. Everyþ

th singular value is marked by a circle.

If we turn to a suboptimal subspace from regutm and find the filter factors
we get Figure 6.15. The overall picture is the same. Both experiments show



6.6 Filter Factors 79

that GS seems to capture the Tikhonov filter factors of the small singular val-
ues at a very early point. Mayby this is the reason that semiconvergence was
not observed in the previous section — recall that GS had a cluster of eigen-
values 1 with the smallest eigenvalues of the Schur complement (divided by/

) being just a bit larger. When the CG iterations progress the minimization
property prefers to approximate the clustered eigenvalues at 1 and therefore
are the small Schur eigenvalues also approximated well. Another observation
is that GS have filter factors (much) greater than 1.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(a) Iteration 1.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(b) Iteration 8.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(c) Iteration 32.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 σ
i

| f
i |

CGLS    
GS      
Schur CG
Tikh    

(d) Iteration 64.

Figure 6.15: Filter factors for deriv2. Subspace from regutm with dimension 8./ ) ¸ � x � � which means filtering for the singular values F � ç ¸ � x ù indicated by
the Tikhonov filter factors. Noise with standard deviation

¸ � x ø J o J L is added to
o

.
Every 8th singular value is marked by a circle.



80 Numerical Experiments

6.7 Subspace Choices

In this section we compare the subspace types discussed in Chapter 5. We have
previously seen results for the SVD and the regutm basis. This section shows
experiments with the remaining subspace types mentioned in Chapter 5. The
wavelet basis is given special attention due to the choice of the genus Ý .

The SVD basis is used as reference, because of its optimality, together with
the standard CGLS. We only do experiments with Schur CG because we have
in the previous sections seen that it performs better than GS, albeit only with a
small margin.

Wavelet Bases

A wavelet can have many forms according to its family and other parameters.
We will only use the “standard” Daubechies wavelets of various genus. Figure
5.1 shows that wavelets of genus 2 and 4 were less smoth than those of genus
8 and 16. Hence we can expect a high genus to perform better than a small.

Figure 6.16(a) shows the convergence for 6 different genuses. Genus Ý )�þ
is almost as good as Ý ) ¸ è A é õ A�ö`� and the transformations are cheaper when
using a fast wavelet transform. Hence we will use Ý ) þ

in the remaining of
this thesis. A higher genus is costly in terms of computation and it seems that
the profit is low.

10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e 
E

rr
or

: |
| x

α −
 x

(i)
 ||

 / 
||x

α ||

i

D=2 
D=4 
D=8 
D=16
D=32
D=50

(a) Convergence using different genus
with subspace dimension 16.

50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Subspace dimension

co
nd

(⋅)

A  
A11
S  
GS 

(b) Condition number as function of sub-
space dimension ( ß�à�ä ).

Figure 6.16: Convergence using different types of wavelets and condition number as
function of subspace dimension.

In Section 5.1.3 it was argued that only subspace dimensions that are pow-
ers of two should be choosen. Figure 6.16(b) shows the condition numbers as
a function of subspace dimension (similar to Figure 6.6) and jumps are visible
at powers of two.



6.7 Subspace Choices 81

Notes on other Subspace Choices

The Lanczos vectors were created ahead of the iterations using Algorithm 9.2.1
from [7]. This gives the algorithm a little advantage compared to the “boot
strap” idea, mentioned in Section 5.1.4, because the algorithm has the Lanczos
vectors ahead of time. On the other hand these Lanczos vectors are different
than those from a bootstrap algorithm because they are constructed from the
unchanged and unpreconditioned system.

Condition Numbers

Table 6.3 gathers the condition numbers of Jacobi, GS, Schur and
� �´�

for a
fixed subspace dimension but using different subspace types. The condition
number of the regularized system is included as a reference. We observe that
the Lanczos subspace perform well even if noise has been added to the right-
hand side, that the Lanczos vectors are created from.

Jacobi GS Schur
� �´�

SVD
é � ¸ Ð H ¸ � � é � ¸ Ð H ¸ � � é � ¸ Ð H ¸ � � õ � ÿ ý H ¸ � ³

regutm
õ � è Ð H ¸ � ç õ � õk¸ H ¸ � L ¸ � �¶� H ¸ � L ¸ � é ý H ¸ � æ

Lanczos
¸ � é¶èkH ¸ � L è � þ Ð H ¸ � � Ð � þ ékH ¸ � � ÿ � �ºö H ¸ � ³

Lanczos w. noise
õ � � ¸ H ¸ � L è � þºþ H ¸ � � Ð � ÿ � H ¸ � � þk� ÿ é�H ¸ � ³

Wavelet ( Ý )�þ
)

¸ � ¸¶¸ H ¸ �ºø è � è¶èkH ¸ � � Ð � ¸ þ H ¸ � � ¸ ��ö è�H ¸ � æ
Sine/Cosine ÿ � ¸¶¸ H ¸ � ç è � ¸ ö H ¸ � � é � è¶ékH ¸ � � ý���ö é�H ¸ � ³
Chebyschev

þ���ý èkH ¸ � ³ þ�� ÿºÿ H ¸ � L ¸ � �ºþ H ¸ � L ¸ � õ è�H ¸ � ù!(+b!¦-0/,&a+,& ¸ � õ èÆH ¸ � ù
Table 6.3: Condition numbers with different subspace types (heat). Subspace dimen-
sion is 16 and

/ ) ¸ � x ó . The subspace “Lanczos with noise” is created from the
right-hand side added normally distributed noise with standard deviation

¸ � x=æ .
The regutm and Chebyshev bases show higher condition numbers than the

rest. The Lanczos and Chebyshev bases show two, somewhat surprisingly,
small condition numbers when used with Jacobi.

Convergence

Figure 6.17 shows the convergence for heat using 16-dimensional subspaces
of all discussed types. We see that the Lanczos subspaces created with and
without a noisy right-hand side perform just as good as the SVD basis. The
Chebyshev and Wavelet bases both start out with a higher error and the con-
vergence rate seems a bit smaller.



82 Numerical Experiments

0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

|| 
x α −

 x
(i)

 ||
2 / 

|| 
x α ||

2

i

SVD        
regutm     
Lanczos    
L. noise   
Wavelet    
Sine/Cosine
Chebyshev  

Figure 6.17: Convergence for heat using different subspace types. Problem size is% ) õ ö è with
/ ) ¸ � x ó and subspace dimensions 16.



6.8 Counting Flops 83

6.8 Counting Flops

Until now the convergence has been measured per iteration. This approach
handicaps the unpreconditioned method because it is faster to do an iteration
with CGLS than with, e.g., Schur CG. To see if anything is actually gained the
convergence should be measured with respect to computation time or flops
(floating point operations). We have used flops because flops are invariant
with respect to the machine used.

0 2 4 6 8 10 12 14 16 18

x 10
7

10
−6

10
−4

10
−2

10
0

10
2

|| 
x α −

 x
(i)

 ||
2 / 

|| 
x α ||

2

flops

CGLS 
GS   
Schur

(a) Problem size ��à�á��¿æ 0 1 2 3 4 5 6 7

x 10
8

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

|| 
x α −

 x
(i)

 ||
2 / 

|| 
x α ||

2

flops

CGLS 
GS   
Schur

(b) Problem size �là���å-á
Figure 6.18: Convergence as a function of flops using heat and subspace regutm. Both
cases uses

/ ) ¸ � x ø and
& ) 8 9

. Note that CGLS operates with
! ) À !C+ M /,8 9Ä + pr L 9=sk9

.

Figure 6.18 shows a clear victory to Schur CG. GS is handicapped by using 3
applications of the system matrix

!
per iteration, while Schur CG only uses 2.

Note that this comparison is not entirely fair to CGLS as optimizations possible
because of the special system matrix

À ! + M /,8:9 Ä + has not been implemented.
However, the conclusion with respect to GS and Schur CG is still valid.

6.9 Variations of the Algorithms

Three specializations of the algorithms have been developed:� A 2-D Schur CG method. The algorithm uses the Kronecker product ap-
proach explained in Section 5.2.� A Schur CG method using wavelet transforms. The generation of

�(�´�
and the transformation to and from the coarse subspace � 
 is imple-
mented using fast wavelet transforms.� A Jacobi and a Gauss-Seidel two-grid preconditioned method applied to
the unregularized problem.



84 Numerical Experiments

Matlab code and documentation is available in the appendix. In the following
we investigate the results of the changes.

6.9.1 The Kronecker Variation

The test problem blur is created from a Kronecker product and thus forms a
perfect test problem. The test problem had the size ¡ p�r � L ø s=� L ø

which in
a non-Kronecker situation would require a kernel

! p�r � óe³ ø æ s�� ó�³ ø æ . Figure
6.19(a) shows the convergence of a 2-D CGLS3 compared to those of Schur
CG using an approximation to

� �	�
. In this particular example 2-D CGLS is

preferable because it converges faster. Schur CG shows some strange jumps,
which must be caused by the approximation of

� �´�
, cf. Figure 6.19(b), that

shows a comparison of Schur CG with and without the approximation of
� �´�

.
The approximation speeds up the calculations but at the expense of stability.
Table 6.4 shows the costs of each of the methods. Included is an estimation
of the costs of not using the standard CGLS and Schur CG methods and the
estimations clearly show that one should be patient if such an experiment is
attempted. We see that the speedup caused by the approximated

�C�´�
is mostly

limited to the initialization phase.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
9

10
−2

10
−1

10
0

10
1

Flops

|| 
x*  −

 x
(i)

 ||
2 / 

|| 
x*  ||

2

2D−CGLS         
Schur (Dim = 8) 
Schur (Dim = 16)
Schur (Dim = 32)

(a) CGLS vs. Schur CG (novec).

0 0.5 1 1.5 2 2.5 3

x 10
9

10
−2

10
−1

10
0

Flops

|| 
x*  −

 x
(i)

 ||
2 / 

|| 
x*  ||

2

2−D CGLS   
Schur NoVec
Schur Vec  

(b) True Schur CG vs. the vector loose ver-
sion. Subspace dimension is 32.

Figure 6.19: Convergence using the Kronecker variation. The test problem is blur with% ) ¸�õ þ , F )��k� þ and the regularization parameters are
& ) 8 9 è

(actually a Kronecker
product) and

/ ) ¸ � x ³ .
6.9.2 Schur CG with Wavelets

The Matlab function in Appendix A.5.1 implements Schur CG where the oper-
ation of

e
is performed by fast wavelet transforms.

3The standard CGLS algorithm modified to take advantage of the Kronecker structure



6.9 Variations of the Algorithms 85

Method Flop/Iteration Initial Costs
2-D CGLS

¸ ��ý`� H ¸ � ç þ�� Ð õ H ¸ � ó
Kronecker Schur CG

é � þ ÿ H ¸ � ç é � ÿ èÆH ¸ �ºø
Kronecker Schur CG (novec)

é � è ÿ H ¸ � ç é � �ºþ H ¸ � ç
CGLS (estimate) v ¸ H ¸ � � v ö H ¸ �ºø
Schur CG (estimate) v õ H ¸ � � v èùH ¸ � �´�

Table 6.4: Iteration and startup costs using the Kronecker variation compared to other
more general algorithms. The subspace dimension is

é õ L
.

Figure 6.20 shows the benefit using the wavelet transform on a big prob-
lem, which in this case is heat with

! p0r � � L æ s=� � L æ . The initial computations
are cheaper than using standard matrix operations and each iteration is a bit
cheaper. An increase in subspace dimension increases the size of

�C�	�
but the

operations with
e

are not more costly. The profit is definitely noticeable and
the wavelet approach seems very promising.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Flops

|| 
x α −

 x
(i)

 ||
2 / 

|| 
x α ||

2

CGLS          
Matrix Dim=16 
Wavelet Dim=16
Wavelet Dim=32
Wavelet Dim=64

Figure 6.20: Convergence vs. flops with wavelets. The problem size is % ) ¸ � õ Ð and
50 iterations are performed. CGLS is working on the unregularized problem.

6.9.3 Non-Regularized Problems

The last modification considered is to apply the preconditioners to the unreg-
ularized problem. In this case we only use CG’s semiconvergence property as
regularization tool.

Figure 6.21 shows the (semi)-convergence of the Jacobi and Gauss-Seidel
two-grid preconditioned systems compared to CGLS. If only the number of



86 Numerical Experiments

iterations is considered we see a slightly better performance of the GS pre-
conditioner, while Jacobi is far behind. However, if the amount of work per
iteration is considered CGLS turns out to be the best choice.

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

i

|| 
x*  −

 x
(i)

 ||
2 / 

|| 
x*  ||

2

No pre 
GS pre 
Jac pre

(a) Convergence vs. iteration.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

10
−2

10
−1

10
0

10
1

Flops
|| 

x*  −
 x

(i)
 ||

2 / 
|| 

x*  ||
2

No pre 
GS pre 
Jac pre

(b) Convergence vs. flops.

Figure 6.21: Convergence using preconditioners on the unregularized heat problem.
Normally distributed noise with deviation

¸ � x ù added such that semiconvergence is
noticeable within the 50 iterations made. The regularization parameter

/ ) ¸ � x ³ and
the subspace splitting is a 8 dimensional regutm subspace.

6.10 The Large Problems

We end the numerical experiments with the two larger problems vesuvio and
geomig. The hope is that the good properties from the small problems used
above carries over to the large problems.

6.10.1 Geophysical Migration

Many parameters for this test run are inspirred from [30] because our knowl-
edge of geophysics is limited.

Beside the usual
& ) 8Q9

we used the regularization matrix

& )
��������
�

õ c ¸ � HQHÃH �c ¸ õ c ¸ ...� . . .
. . .

. . . �
...

. . . . . . c ¸� HÃHQH � c ¸ õ
���������
�
U 8 � ù (6.1)

This choice is based on the knowledge that most seismic profiles have horizon-
tal boundaries. This holds true for our test example with the exception of the
slope at the bottom (Figure 6.4).



6.10 The Large Problems 87

The subspace used is composed by a Kronecker product having 10 in the
“horizontal kernel” (the left factor in the Kronecker product) and 10 in the
“vertical kernel”, that ise ) e � U e L A e �?p�r � ù s�� � and

e L p�r � � ��s�� � A
which yields

e p�r � ù � ù s�� �e� . Both
e �

and
e L

are created using regutm.
Figure 6.22(a) shows the error with respect to the true solution and hence

we observe semiconvergence. We see that Schur CG with (6.1) achieves the best
solution after 10 iterations while the “preconditioned” CGLS (PCGLS) have its
best solution after 23 iterations. On the other hand we note that CGLS performs
better than Schur CG with the identity as regularization matrix. Table 6.5 show
the flop-count per iteration and we see that Schur CG is twice as expensive per
iteration and in that perspective PCGLS and Schur CG performs almost equal.
However, if we also consider the initial costs PCGLS wins with a large margin.
The initial costs, most notable the creation of

���´�
, are to large for Schur CG

to compete in this example. Finally we see that the cost of using the more
complicated

&
is almost negligible.

Figure 6.22(b) shows the best solution from Schur CG with (6.1). The hor-
izontal layers are found while the slope at the bottom is missing. This was
expected because of the regularization matrix.

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

|| 
x*  −

 x
(i)

 ||
2 / 

|| 
x*  ||

2

i

Schur (I)
Schur (L)
PCGLS    
CGLS     

(a) Convergence history.

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

(b) Best solution.

Figure 6.22: Convergence and best solution for geomig. The best solution is obtained
with Schur CG with (6.1) and is reached after 10 iterations. PCGLS reaches its best
solution after 23 iterations, but it is not as good as that of Schur CG. The parameter/ ) ¸

is selected by trial and error and noise with standard deviation
¸ � x�æ is added to

the right-hand side.

6.10.2 Inversion of Geomagnetic Data

An SVD decomposition of the test problem vesuvio reveals that the first right
singular vectors only include information on the top most layer, i.e., the layer



88 Numerical Experiments

Algorithm Flops/Iteration Initial Costs
CGLS

é � õ þ H ¸ � ç ¸ ��ö èÆH ¸ � ç
PCGLS

é � õ èÆH ¸ � ç é � ¸ èÆH ¸ � ç
Schur CG

8:9 è � è ý H ¸ � ç Ð � � ¸ H ¸ � �
Schur CG

& è � èSéÆH ¸ � ç Ð � õ¸ H ¸ � �
Table 6.5: Iteration and initial costs for geomig. The initial work of CGLS and PCGLS
amounts to a half iteration and one iteration respectively.

just beneath the surface. As a consequence CGLS have difficulties reconstruct-
ing information deeper below the surface. The solution is to use another reg-
ularization matrix

&
that modifies the problem in a way that information in-

formation on deeper components are present in the the first generalized right
singular values (the last columns of GSVD’s ¡ ). Experiments show that the
choice & ) &n� U � &n� U &n� ��A
where

& � )
��������
�

õ c ¸ � HÃHQH �c ¸ õ c ¸ ...� . . . . . . . . . �
...

. . . . . . c ¸� HQHQH � c ¸ õ
���������
�

has the desired effect.
Figure 6.23 shows the convergence of Schur CG and PCGLS with the spe-

cial regularization matrix. Furthermore we did the experiment with standard
CGLS and Schur CG using the identity. We see Schur CG with

&
achieves a bet-

ter result than the others. PCGLS shows the second best result. CGLS shows
very slow convergence just as Schur CG using the identity.

Table 6.6 lists the cost of an iteration and the initial costs of each method.
The high initial costs handicaps Schur CG, but the cost per iteration is almost¸ ã Ð of that of PCGLS. Thus if many iterations are needed Schur CG with the
special regularization matrix Schur CG is preferable. We observe from tables
6.5 and 6.6 that Schur CG’s initial costs are relatively larger than the cost of an
iteration when the system matrix is sparse.

Algorithm Flops/Iteration Initial Costs
CGLS Ð � � éÆH ¸ � ó õ � �S� H ¸ � ó
PCGLS

é ��ö`� H ¸ � ç é ��ö`� H ¸ � ç
Schur CG

8:9 þ�� õ ÿ H ¸ � ó ¸ � Ð éÆH ¸ �Bø
Schur CG

& ÿ � õ éÆH ¸ � ó õ � èSéÆH ¸ �Bø
Table 6.6: Iteration and initial costs for vesuvio. The initial work of CGLS and PCGLS
amounts to a half iteration and one iteration respectively.



6.10 The Large Problems 89

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

2

3

4

i

|| 
x*  −

 x
(i)

 ||
2 / 

|| 
x*  ||

2

CGLS   
PCGLS  
Schur I
Schur L

Figure 6.23: Convergence plot for vesuvio.



90 Numerical Experiments



C H A P T E R 7

Conclusion

This final chapter forms a summary on the performed work and the lessons
learned.

The conjugate gradient method has been explained and its convergence
properties have been covered. We introduced the convergence in a general
setting and we looked at the special features with respect to ill-posed problems
and the need for preconditioning has been motivated.

The two-grid methods proposed by Hanke and Vogel have been explained
in detail. The algorithms for the restricted class of regularization matrices have
been generalized to support all semidefinite

&n+1&
. We have estimated the con-

dition numbers of the treated methods and hereby we found, that the Jacobi
preconditioned system is likely to converge slower than even the unprecondi-
tioned system.

Through knowledge of the usual behaviour of the right singular vectors
we have proposed a number of subspace splittings suitable for use with the
algorithms.

We have implemented the Schur complement, the Jacobi-like two-grid pre-
conditioned and the Gauss-Seidel-like two-grid preconditioned conjugate gra-
dient methods in two versions; one for a full rank regularization matrix

&
and one for a regularization matrix with a nontrivial null-space. Furthermore
we have implemented two variations of Schur complement conjugate gradi-
ents that utilizes Kronecker products and wavelet transforms respectively. The
preconditioned methods have the possibility to work with the unregularized
methods and hereby rely on semiconvergence to perform the regularization.

The algorithms have undergone numerical tests in order to show strengths
and weaknesses. The following is a list of observations made from the experi-
ments:� The Jacobi-like two-grid preconditioner is very sensitive to the selected

subspace and noise in the right-hand side. In some cases the convergence
is much slower than the standard CGLS method.



92 Conclusion� The Gauss-Seidel-like two-grid preconditioner and the Schur comple-
ment conjugate gradient converge equally fast when measuring itera-
tions. However, an iteration with Schur is approximately

õ ã é
the work of

that of Gauss-Seidel.� The choice of the regularization parameter
/

should rather be to low, as
Schur conjugate gradients also shows semiconvergence.� The optimal subspace choice is based on an SVD. However, the sub-
bases Lanczos and regutm do not enforce a great penalty. The sine/cosine,
wavelets and Chebyshev bases seem a bit weaker.� The use of fast wavelet transforms enable the use of larger subspaces. A
larger subspace is desirable because of faster convergence. However, the
fast wavelet transform requires the problem size to be a power of 2.� The preconditioners does not work well with the unregularized problem.� The “Kronecker” variation of the Schur complement algorithm did not
prove usefull for the considered test problem blur.

The general impression is that much care must be taken to select the sub-
space splitting and that the standard CGLS method in many cases is a better
choice. However, we did see a very good results in particular with the special
wavelet implementation.

Future Work

We have in this thesis covered many facets of the algorithms but just as many
(at least) are still uncovered. After having worked with the algorithms we
conclude this thesis with a few ideas that seem interesting to investigate:� An implementation using a fast Fourier transform. The fast Fourier trans-

form does not require the problem size to be a power of two — a problem
with the fast wavelet transform.� The implementations of this thesis does not have stopping criteria be-
sides a iteration limitation. A reliable stopping criteria is needed.� A parallelization, if possible, of the algorithms is necessary in order to
exploit the current super-computers.� A “bootstrap” preconditioner that is iteratively extended from the Lanc-
zos vectors as they become available in each iteration.� We have not compared our preconditioners with others and it is inter-
esting to see whether other preconditioners can do better and for which
problems.



A P P E N D I X A

Matlab Code

Any code is useless without proper testing and documentation on its use. The
next section describes how it has been tested that the actual implementations
are correct with respect to the derivations from Chapter 4. Then two sections
show a “manual-page” along with the actual Matlab code. The algortihms
are divided into two sections according to the size of the null space of the
regularization matrix

&
. Even though the synopsis are almost the same for an

empty null space and a non-empty null space and the manual pages are very
alike they are repeated for completeness.

Finally we list two specializations of Schur complement CG, i.e., a imple-
mentation with the subspace operations done by fast wavelet transforms and
a implementation using Kronecker products as kernel, subspace etc.

A.1 Test Procedures

The two preconditioners have been tested using the same procedure, while
Schur CG has been tested in its own way because of its different nature.

A.1.1 Schur Complement CG

The test for the Schur complement CG method was to create the actual Schur
complement

¦
and operate entirely in the “Schur space” and not transform

all vectors back into the normal basis. Thereafter we compared the resultsK � 
 � , residuals �Å� 
 � etc. computed by the actual programs by transforming the
“Schur space” vectors back.

Figure A.1(a) shows that our algorithms at a certain point diverges from
the solution which the untransformed Schur CG finds. Figure A.1(b) show the
residuals and gives the explanation of the strange behaviour. The two versions
of Schur CG both have the same residual until the norm reaches the machine
precision. At this point the untransformed continues to reduce its residual



94 Matlab Code

0 5 10 15 20 25
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

i

E
rr

or

Schur CG 1
Schur CG 2
Differense

(a) Error and difference of Schur algo-
rithms.

0 5 10 15 20 25

10
−15

10
−10

10
−5

R
es

id
ua

l

i

Schur CG 1
Schur CG 2

(b) Residuals

Figure A.1: Verification of Schur complement CG algorithm. Schur CG 1 denotes
a Schur algorithm computed in the Schur complement space and afterwards trans-
formed. Schur CG 2 is our method. “Difference” is the norm of the difference of the
solution in each iteration. The test problem is deriv2 with % ) è Ð and

/ ) ¸ � x ç
with

a wavelet basis of dimension 16.

while our method “stumbles”. The reason must be that we use the residual
with, e.g.

5 x � � and that we can not expect the residual to be precise at this
point. This means that the updates of

5 x � � are now out of synchronization
and we can not expect convergence.

A.1.2 The Preconditioned Methods

We assume the actual CG part of the algorithms to be correct and thus we only
need to test the preconditioner. We construct the block preconditioner

7
ex-

plicitly (both the Jacobi and the Gauss-Seidel like) and we compute
7 x � � for

some random � using the Matlabs standard “backslash” operator. Then we
take the same � and put it through the preconditioning part of the CG algo-
rithm and compare the result to the simple version. The preconditioning part
was extracted from the algorithms for this purpose. The result of the compar-
isons seems to be linked to the condition number of

!C+,!Ê-û/1&2+1&
. Figure A.2

shows the difference as a function of the condition number of the regularized
system. The differences can be explained by the fact that the the precondition-
ing algorithms incorporates subtraction operations with the danger of cancel-
lations. The nicer behaviour obtained with an SVD basis must be contributed
the fewer complications arising from diagonal matrices.



A.2 A Short Implementation Note on
5 Y

95

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Maximum difference from preconditioning

|| 
N

−
1  r

 −
 A

lg
(r

) 
|| ∞

 / 
|| 

N
−

1  r
 ||

∞

α (≈ cond(A))

Jacobi      
Gauss−Seidel

(a) Wavelet basis

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−14

Maximum difference from preconditioning

|| 
N

−
1  r

 −
 A

lg
(r

) 
|| ∞

/||
N

−
1  r

 ||
∞
 

α (≈ cond(A))

Jacobi      
Gauss−Seidel

(b) SVD basis

Figure A.2: Comparison of algorithms with their matrix equivalents as a function of/
and hence the condition number OQPSR�T � � � .

A.2 A Short Implementation Note on � �
The solution of systems with the pseudo-inverse of

&n+b&
is done as follows. A

QR-factorization of
& )����

is calculated from which a factorization of
& +,& )� + �

is easely obtained. A “backslash” operation with
�Çp6r�� s9

and � p6r��
where ' � % selects the solution (out of infinitely many) with a minimum of %nc' zeros. This coresponds to the solution

� )���Y � -me � ª , where

ª pCr 9 x �
and

the columns of
e � span the null space of

&
. The component in the null space

is then removed by
� Y � ) � c
7 � � . The “backslash” with the transposed� +

calculates the least squares solution and has no need for correction. The
calculation is done with the aid of a possible expensive QR factorizaion of

� +
.

However, the (usual) sparsity of
&

and hence
�

has keept the costs down and
the problem was not noticed until late in the project and has therefore not been
solved properly.



96 Matlab Code

A.3 Symmetric Positive Definite « O «
A.3.1 jacobicg

Purpose Conjugate gradient method with a two-grid Jacobi-like regular-
ized preconditioner.

Synopsis [X, rho, eta, flopc] = jacobicg(K,Vk,alpha,L,b,maxiter � � ,reg ! ,trace ! )
Description Performs maxiter iterations of conjugate gradients with a two-grid

block diagonal preconditioner (Jacobi-like), either on the unregu-
larized normal equation system! + ! K )�o

if reg
§) ¸

or on the regularized system (default)� ! + !.-0/,& + & � K ) ! + o
if reg

) ¸
The preconditioner is formed from the subspace Vk, the ill-posed
matrix K, the regularization matrix L and the regularization pa-
rameter alpha.
If the regularization matrix is the identity use the empty matrix []
as argument to achieve computational savings.
The result of each iteration is returned as columns in X. The resid-
ual of each iteration is stored in rho and eta respectively. A flop-
count after each iteration is returned in flopc

If parameter trace is used, an estimation of remaining calculation
time is printed after each iteration — useful for large problems.

Code

function [X, rho, eta, flopc] = ...
jacobicg(K,V,alpha,L,b,maxiter,reg,trace)

% JACOBICG Conjugated gradients with two-level Jacobi
% like preconditioner for ill-posed problems.
%
% [X,rho,eta,flopc] =
% jacobicg(K,V,alpha,L,b,maxiter {{,reg},trace})
%
% Solves a ill-posed problem with or without tikhonov
% regularization, i.e.,
%
% (K’K + alpha*L’L)u = K’b (1)
% or
% K’K u = K’b (2)
%
% Input arguments:
% K : Kernel matrix
% V : Basis for coarse subspace
% alpha : Regularization parameter used in preconditioner



A.3 Symmetric Positive Definite
&n+,&

97

% and in (1).
% L : Seminorm matrix (SPD)
% Use [] for identity
% b : Right hand side vector
% iter : Maximum number of iterations
% reg : =1 Use CG on (1)
% ˜=1 Use CG on (2)
% Optional, default: 1
% trace : Any value yields output information during
% iterations; usefull for large problems.
% Optional, default: off
%
% Output arguments:
% X : Solutions stored as columns
% rho : Residual norms
% eta : Solution norms
% flopc : Flopcount after eacher iteration
%
% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods for
% Ill-Posed Problems

% Last Revised: 2000.09.02

% Checking input arguments and setting defaults
identity = 0;
if nargin < 8

trace = 0;
if nargin < 7

reg = 1;
end

end
if isempty(L)

identity = 1;
end
if nargout == 4

flops(0);
end

% Initial work (factorizations etc.)
b = K’*b;
KV = K*V;
if identity

A11 = KV’*KV + alpha*V’*V;
clear KV;

else
LV = L*V;
A11 = KV’*KV+alpha*LV’*LV;
clear KV LV;

end
% Cholesky of SPD A11
R = chol(A11);

if identity
G = V’*V;

else



98 Matlab Code

G = V’*L’*L*V;
LR = qr(L); % L usually banded

end
GR = chol(G);

% Allocate memory
u = zeros(size(K,2),1);
X = zeros(size(K,2),maxiter);
rho = zeros(maxiter,1);
r = b; delta = 0;

for i=1:maxiter
% Preconditioning step
v = V’*r; % Transform
e = R\(R’\v) - GR\(GR’\v) / alpha;
if identity
w = r; % M\r;

else
w = LR\(LR’\r); % M\r;

end
z = V*e + w/alpha;
% Preconditioning step end

% Cg step
deltaold = delta;
delta = r’*z;
if i == 1
p = z;

else
beta = delta / deltaold;
p = z + beta*p;

end
d = K’*(K*p);
% Work on regularized system or not
if reg == 1
if identity

d = d + alpha*p; % Non regularized
else

d = d + alpha*(L’*(L*p)); % Regularized
end

end

% Update data
alfa = delta / (p’*d);
u = u + alfa*p;
X(:,i) = u;
r = r - alfa*d;

% Compute norms, if required
if nargout > 1, rho(i) = norm(r); end
if nargout > 2, eta(i) = norm(u); end
flopc(i) = flops;

% Print trace information
if trace
disp([’Iteration ’, num2str(i), ’ in progress’])



A.3 Symmetric Positive Definite
&n+,&

99

if i > 1
disp(sprintf(’Done in %3.1f minutes’, ...

toc/60*(maxiter - i)));
end
tic

end
end



100 Matlab Code

A.3.2 gscg

Purpose Conjugate gradient method with two-grid symmetric Gauss-Seidel-
like regularized preconditioning.

Synopsis [X, rho, eta, flopc] = gscg(K,Vk,alpha,L,b,iter �"� ,reg ! ,trace ! )
Description Performs maxiter iterations of conjugate gradients with a two-grid

block symmetric Gauss-Seidel-like preconditioner, either on the
unregularized normal equation system! + ! K )�o

if reg
§) ¸

or on the regularized system (default)� ! + !.-0/,&$# � K ) ! + o
if reg

) ¸
The preconditioner is formed from the subspace Vk, the ill-posed
matrix K, the regularization matrix L and the regularization pa-
rameter alpha.
If the regularization matrix is the identity use the empty matrix []
as argument to achieve computational savings.
The result of each iteration is returned in columns of X and the
norm of the residuals and solutions is stored in rho and eta re-
spectively. A flop-count after each iteration is stored in flopc.
If the optional parameter trace is stated an estimated remaining
calculation time is printed after each iteration.

Code

function [X,rho,eta,flopc] = ...
gscg(K,V,alpha,L,b,iter,reg,trace)

% GSCG Conjugated gradients with two-level preconditioner
% Gauss-Seidell like preconditioner for ill-posed
% problems.
%
% [X, rho, eta, flopc] =
% GSCG(K,Vk,alpha,L,b,maxiter,reg)
%
% Solves a ill-posed problem with or without tikhonov
% regularization, i.e
%
% (K’K + L’L)u = K’b (1)
% or
% K’K u = K’b (2)
%
% using conjugated gradients with a two grid Gauss-Seidel
% like regularized precondtioner.
%
% Input arguments:
% K : Kernel matrix



A.3 Symmetric Positive Definite
&n+,&

101

% V : Basis for coarse subspace
% alpha : Regularization parameter used in preconditioner
% and in (1).
% L : Seminorm matrix (SPD)
% Use [] for identity
% b : Right hand side vector
% iter : Maximum number of iterations
% reg : =1 Use CG on (1) (Default)
% ˜=1 Use CG on (2)
% trace : Output estimated remaining time after each iteration
% Default off
%
% Output arguments:
% X : A matrix with all iter solutions stored as columns
% rho : A vector containing residuals
% flopsc: A flopcount after each iteration.
%
% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods
% for Ill-Posed Problems

% Last Revised: 2000.09.02

% Checking input arguments
identity = 0;
if nargin < 8

trace = 0;
if nargin < 7

reg = 1;
end

end
if isempty(L)

identity = 1;
end
if nargout == 4

flops(0);
end

% Initial work (factorizations etc.)
b = K’*b;
KV = K*V;
if identity

A11 = KV’*KV + alpha*V’*V;
clear KV;

else
LV = L*V;
A11 = KV’*KV+alpha*LV’*LV;
clear KV LV;

end

R = chol(A11);
if identity

G = V’*V;
GR = triu(qr(V));

else
LV = L*V;



102 Matlab Code

G = LV’*LV;
GR = triu(qr(LV));
LR = triu(qr(L));
clear LV;

end

% Allocate memory
u = zeros(size(K,2),1);
X = zeros(size(K,2),iter);
rho = zeros(iter,1);
r = b;
delta = 0;

for i=1:iter
% Preconditioning step
v = V*(R\(R’\(V’*r)));
e = r - K’*(K*v);
if identity
w = e; % M\e;

else
w = LR\(LR’\e); % M\e;

end

px = w - V*(GR\(GR’\(V’*e))); % V*G\V’*e
uq = px / alpha;
y = r - K’*(K*uq);
up = V*(R\(R’\(V’*y)));
z = up + uq;

% Cg step
deltaold = delta;
delta = r’*z;
if i == 1
p = z;

else
beta = delta / deltaold;
p = z + beta*p;

end
d = K’*(K*p);
% Work on regularized system or not
if reg == 1
if identity

d = d + alpha*p;
else

d = d + alpha*(L’*(L*p));
end

end

alfa = delta / (p’*d);
u = u + alfa*p;
X(:,i) = u;
r = r - alfa*d;

% Update norms, if required
if nargout > 1, rho(i) = norm(r); end



A.3 Symmetric Positive Definite
&n+,&

103

if nargout > 2, eta(i) = norm(u); end
flopc(i) = flops;

% Print trace information
if trace

disp([’Iteration ’, num2str(i), ’ in progress’])
if i > 1
disp(sprintf(’Done in %3.1f minutes’, ...

toc/60*(iter - i)));
end
tic

end
end



104 Matlab Code

A.3.3 schurcg

Purpose Schur complement conjugate gradient method with regulariza-
tion for ill-posed problems.

Synopsis [X, rho, eta, flopc] = schurcg(K,V,alpha,L,b,maxiter � ,trace ! )
Description Performs maxiter iterations of the Schur complement conjugate

gradient method on the regularized system� ! + !{-0/,& + & � K ) ! + o
(A.1)

The Schur complement CG operates on a subspace which is
& + &

-
orthogonal to the subspace defined by V.
If the regularization matrix is the identity use the empty matrix []
as argument to achieve computational savings.
The result of each iteration is returned in X and norm of the resid-
uals and solutions are stored in rho and eta respectively.
If parameter trace is used an estimation of remaining running
time is printed after each iteration.

Code

function [X, rho, eta, flopc] = ...
schurcg(K,V,alpha,L,b,maxiter,trace)

% SCHURCG Schur Complement Conjugated Gradients
% Assumes L to be invertible.
%
% [X, rho, eta, flopc] =
% SCHURCG(K,V,alpha,L,b,maxiter {,trace})
%
% Solves a tikhonov regularized system of type
% (K’K+alpha*L’L)u = K’*b
% using schur complement conjugated gradients -- see [1].
%
% Input arguments:
% K : Kernel matrix
% V : Basis for coarse subspace
% alpha : Regularization parameter
% L : Seminorm matrix (SPD)
% Use [] for identity
% b : Right hand side vector
% iter : Maximum number of iterations
% trace : (Optional) Print information during calculations
%
% Output argument:
% X : A matrix with all iter solutions stored as columns
% rho : Norm of residuals
% eta : Solution norms
% flopc : Flopcount after each iteration
%
% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods



A.3 Symmetric Positive Definite
&n+,&

105

% for Ill-Posed problems

% Last Revised: 2000.08.24

if nargin < 7
trace = 0;

end
if nargout == 4

flops(0);
end

% Cholesky factorization of K’K and L’L
if ˜isempty(L)

tt = K*V; tt2 = L*V;
A11 = tt’*tt+alpha*tt2’*tt2;
RL = qr(L);
clear tt tt2;

else
tt = K*V;
A11 = tt’*tt+alpha*speye(size(V,2));

end

% A11 is SPD (at least theoreticaly)
% Cholesky fast and stable
RA11 = chol(A11);
if trace

disp(’A11 done’)
end
% We are working with normal equations
b = K’*b;

% Initialization
u = V*(RA11\(RA11’\(V’*b)));
if ˜isempty(L)

r = b - K’*(K*u) - alpha*(L’*(L*u));
y = RL\(RL’\r);

else
r = b - K’*(K*u) - alpha*u;
y = r;

end

d = r;
z = y;
delta0 = y’*r;
X = [];

for i=1:maxiter
if ˜isempty(L)

tt = K’*(K*z) + alpha*(L’*(L*z)); % A*z
else

tt = K’*(K*z) + alpha*z; % A*z
end
v = z - V*(RA11\(RA11’\(V’*tt)));
if ˜isempty(L)

w = K’*(K*v) + alpha*(L’*(L*v)); % A*v
g = RL\(RL’\w);



106 Matlab Code

else
w = K’*(K*v) + alpha*v; % A*v
g = w;

end
tau = delta0 / (d’*g);
u = u + tau*v; % Update solution
X(:,i) = u; % Store solution
r = r - tau*w; % Update residual
y = y - tau*g;
delta1= r’*y;
beta = delta1 / delta0;
delta0 = delta1;
z = y + beta*z; % Update search dir
d = r + beta*d;

% Update norms, if required
if nargout > 1, rho(i) = norm(r); end
if nargout > 2, eta(i) = norm(u); end
flopc(i) = flops;

% Print trace information
if trace
disp([’Iteration ’, num2str(i), ’ in progress’])
if i > 1

disp(sprintf(’Done in %3.1f minutes’, ...
toc/60*(maxiter - i)));
end
tic

end
end



A.4 Semi Definite
&a+1&

107

A.4 Semi Definite « O «
A.4.1 jacobicgsemi

Purpose Conjugate gradient method with a two-grid Jacobi-like regular-
ized preconditioner with a semidefinite

&
.

Synopsis [X, rho, eta, flopc] = jacobicgsemi(K,Vk,alpha,L,L0,b,maxiter,reg)

Description Performs maxiter iterations of conjugate gradients with a two-grid
block diagonal preconditioner (Jacobi-like), either the unregular-
ized normal equation system! + ! K )mo

if reg
§) ¸

or on the regularized system (default)� ! + !{-0/,& + & � K ) ! + o
if reg

) ¸
The preconditioner is formed from the subspace Vk, the ill-posed
matrix K, the regularization matrix L, the null space of the reg-
ularization matrix L0

) ���
L
�

and the regularization parameter
alpha. The null space of K and L are not allowed to intersect.
The result of each iteration is returned in X and the norm of the
residuals and solutions are found in rho and eta respectively. A
flop-count from each iteration is stored in flopc.
If parameter trace is stated an estimation of remaining calculation
time is printed after each iteration.

Code

function [X, rho, eta, flopc] = ...
jacobicgsemi(K,V,alpha,L,L0,b,maxiter,reg,trace)

% JACOBICG Conjugated gradients with two-level Jacobi
% like preconditioner for ill-posed problems.
% (for semidefinite L)
%
% [X, rho, eta, flopc] =
% jacobicgsemi(K,V,alpha,L,b,maxiter {{,reg},trace})
%
% Solves a ill-posed problem with or without tikhonov
% regularization, i.e
%
% (K’K + L’L)u = K’b (1)
% or
% K’K u = K’b (2)
%
% Input arguments:
% K : Kernel matrix
% V : Basis for coarse subspace
% alpha : Regularization parameter used in preconditioner and



108 Matlab Code

% in (1).
% L : Seminorm matrix
% L0 : Null space of L
% b : Right hand side vector
% iter : Maximum number of iterations
% reg : =1 Use CG on (1)
% ˜=1 Use CG on (2)
% Optional, default: 1
% trace : Any value yields output information during
% iterations; usefull for large problems.
% Optional, default: off
%
% Output arguments:
% X : A matrix with all iter solutions stored as columns
% rho : A vector containing residuals
%
% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods
% for Ill-Posed Problems

% Last Revised: 2000.08.03

% Checking input arguments and setting defauls
identity = 0;
if nargin < 9

trace = 0;
if nargin < 8
reg = 1;

end
end
if isempty(L)

identity = 1;
end
if nargout == 4

flops(0);
end

% Prepare projection operators
nd = size(L0,2);
k = size(V,2);
V2 = V;
for i=1:k

for j=1:nd
V2(:,i) = V2(:,i) - (V2(:,i)’*L0(:,j))*(L0(:,j));
V2(:,i) = V2(:,i) / norm(V2(:,i));

end
end
V = [L0 V2];

% Initial work (factorizations etc.)
KV = K*V; LV = L*V;
A11 = KV’*KV + alpha*LV’*LV;
clear KV LV;

RA11 = chol(A11);
G = (V2’*L’*L*V2);



A.4 Semi Definite
&a+1&

109

RG = chol(G);
RL = triu(qr(L));

b = K’*b;

% Allocate memory
u = zeros(size(K,2),1);
X = zeros(size(K,2),maxiter);
rho = zeros(maxiter,1);
r = b;
delta = 0;

for i=1:maxiter
% Preconditioning step
e1 = V*(RA11\(RA11’\(V’*r)));
warning off
w = RL\(RL’\r);
warning on
w = w - L0*(L0’*w);
e2 = w /alpha;
e3 = V2*(RG\(RG’\(V2’*r)))/alpha;
z = e1 + e2 - e3;
% Preconditioning step end

% Cg step
deltaold = delta;
delta = r’*z;
if i == 1

p = z;
else

beta = delta / deltaold;
p = z + beta*p;

end
d = K’*(K*p);
% Work on regularized system or not
if reg == 1

if identity
d = d + alpha*p; % Non regularized

else
d = d + alpha*(L’*(L*p)); % Regularized

end
end

% Update data
alfa = delta / (p’*d);
u = u + alfa*p;
X(:,i) = u;
r = r - alfa*d;

% Store information, if required
if nargout > 1, rho(i) = norm(r); end
if nargout > 2, eta(i) = norm(u); end
flopc(i) = flops;

% Print trace information
if trace



110 Matlab Code

disp([’Iteration ’, num2str(i), ’ in progress’])
if i > 1

disp(sprintf(’Done in %3.1f minutes’, ...
toc/60*(maxiter - i)));
end
tic

end
end



A.4 Semi Definite
&a+1&

111

A.4.2 gscgsemi

Purpose Conjugate gradient method with two-grid symmetric Gauss-Seidel-
like regularized preconditioning.

Synopsis [X, rho, eta, flopc] = gscg(K,Vk,alpha,L,L0,b,iter �"� ,reg ! ,trace ! )
Description Performs maxiter iterations of conjugate gradients with a two-grid

block symmetric Gauss-Seidel-like preconditioner, either on the
unregularized normal equation system! + ! K )mo

if reg
§) ¸

or on the regularized system (default)� ! + !{-0/,& + & � K ) ! + o
if reg

) ¸
The preconditioner is formed from the subspace Vk, the ill-posed
matrix K, the regularization matrix L, the null space of the reg-
ularization matrix L0

) ���
L
�

and the regularization parameter
alpha. The null space of K and L must not intersect.
The result of each iteration is returned in X and the norm of each
the residual and solution is found in rho and eta respectively.
If trace is stated an estimated remaining running time is displayed
after each iteration.

Code

function [X,rho,eta,flopc] = ...
gscg(K,V,alpha,L,b,iter,reg,trace)

% GSCG Conjugated gradients with two-level preconditioner
% Gauss-Seidell like preconditioner for ill-posed
% problems.
%
% [X, rho, eta, flopc] =
% GSCG(K,Vk,alpha,L,b,maxiter,reg)
%
% Solves a ill-posed problem with or without tikhonov
% regularization, i.e
%
% (K’K + L’L)u = K’b (1)
% or
% K’K u = K’b (2)
%
% using conjugated gradients with a two grid Gauss-Seidel
% like regularized precondtioner.
%
% Input arguments:
% K : Kernel matrix
% V : Basis for coarse subspace
% alpha : Regularization parameter used in preconditioner
% and in (1).



112 Matlab Code

% L : Seminorm matrix (SPD)
% Use [] for identity
% b : Right hand side vector
% iter : Maximum number of iterations
% reg : =1 Use CG on (1) (Default)
% ˜=1 Use CG on (2)
% trace : Output estimated remaining time after each iteration
% Default off
%
% Output arguments:
% X : A matrix with all iter solutions stored as columns
% rho : A vector containing residuals
% flopsc: A flopcount after each iteration.
%
% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods
% for Ill-Posed Problems

% Last Revised: 2000.09.02

% Checking input arguments
identity = 0;
if nargin < 8

trace = 0;
if nargin < 7
reg = 1;

end
end
if isempty(L)

identity = 1;
end
if nargout == 4

flops(0);
end

% Initial work (factorizations etc.)
b = K’*b;
KV = K*V;
if identity

A11 = KV’*KV + alpha*V’*V;
clear KV;

else
LV = L*V;
A11 = KV’*KV+alpha*LV’*LV;
clear KV LV;

end

R = chol(A11);
if identity

G = V’*V;
GR = triu(qr(V));

else
LV = L*V;
G = LV’*LV;
GR = triu(qr(LV));
LR = triu(qr(L));



A.4 Semi Definite
&a+1&

113

clear LV;
end

% Allocate memory
u = zeros(size(K,2),1);
X = zeros(size(K,2),iter);
rho = zeros(iter,1);
r = b;
delta = 0;

for i=1:iter
% Preconditioning step
v = V*(R\(R’\(V’*r)));
e = r - K’*(K*v);
if identity

w = e; % M\e;
else

w = LR\(LR’\e); % M\e;
end

px = w - V*(GR\(GR’\(V’*e))); % V*G\V’*e
uq = px / alpha;
y = r - K’*(K*uq);
up = V*(R\(R’\(V’*y)));
z = up + uq;

% Cg step
deltaold = delta;
delta = r’*z;
if i == 1

p = z;
else

beta = delta / deltaold;
p = z + beta*p;

end
d = K’*(K*p);
% Work on regularized system or not
if reg == 1

if identity
d = d + alpha*p;

else
d = d + alpha*(L’*(L*p));

end
end

alfa = delta / (p’*d);
u = u + alfa*p;
X(:,i) = u;
r = r - alfa*d;

% Update norms, if required
if nargout > 1, rho(i) = norm(r); end
if nargout > 2, eta(i) = norm(u); end
flopc(i) = flops;



114 Matlab Code

% Print trace information
if trace
disp([’Iteration ’, num2str(i), ’ in progress’])
if i > 1

disp(sprintf(’Done in %3.1f minutes’, ...
toc/60*(iter - i)));
end
tic

end
end



A.4 Semi Definite
&a+1&

115

A.4.3 schurcgsemi

Purpose Schur complement conjugate gradient method with regulariza-
tion for ill-posed problems.

Synopsis X = schurcgsemi(K,V,alpha,L,L0,b,maxiter � ,trace ! )
Description Performs maxiter iterations of the Schur complement conjugate

gradient method on the regularized system� ! + !¦-0/,& + & � K ) ! + o
(A.2)

The Schur complement CG operates on a subspace which is
& +,&

-
orthogonal to the subspace defined by V and L0 (the null space of
L). The null space of L and K must not intersect.
The result of each iteration is returned in X. The norm of the resid-
uals and solutions are stored in rho and eta respectively.
If trace is stated an estimated remaining running time is displayed
after each iteration.

Code

function [X, rho, eta, flopc] = ...
schurcgsemi(K,V,alpha,L,L0,b,maxiter,trace)

% SCHURCGSEMI Schur Complement Conjugated Gradients
% Assumes L to be semidefinie. Nullspace
% required.
%
% [X, rho, eta, flopc] =
% SCHURCGSEMI(K,V,alpha,L,W,b,maxiter)
%
% Solves a tikhonov regularized system of type
% (K’K+L’L)u = K’*b
% using schur complement conjugated gradients -- see [1].
%
% Input arguments:
% K : Kernel matrix
% V : Basis for coarse subspace (L0 is added)
% alpha : Regularization parameter
% L : Seminorm matrix
% L0 : Null space of L
% b : Right hand side vector
% iter : Maximum number of iterations
% trace : Print estimated remaining run time after
% each iteraiton
% Default off
%
% Output argument:
% X : A matrix with all iter solutions stored as columns
% rho : Residual norm from each iteration
% eta : Solution norm form each iteration
% flopc : Flop count from each iteration
%



116 Matlab Code

% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods
% for Ill-Posed problems

% Last Revised: 2000.09.02

if nargin < 9
trace = 0;

end
if nargout == 4

flops(0);
end

% Prepare projection operators
p = size(L0,2);
k = size(V,2);
V2 = V;
for i=1:k

for j=1:p
V2(:,i) = V2(:,i) - (V2(:,i)’*L0(:,j))*(L0(:,j));
V2(:,i) = V2(:,i) / norm(V2(:,i));

end
end
V = [L0 V2];

% Cholesky factorization of K’K
KV = K*V; LV = L*V;
A11 = KV’*KV+alpha*LV’*LV;
G = L*V2; G = G’*G;

RA11 = chol(A11);
RG = chol(G);
RL = triu(qr(L));

% We are working with normal equations
b = K’*b;

% Initialization
x = V*(RA11\(RA11’\(V’*b)));
r = b - K’*(K*x) - alpha*(L’*(L*x));
% Turn off warnings
warning off
q = RL\(RL’\r);
warning on
y = q - V2*(RG\(RG’\(V2’*r))) - L0*(L0’*q);
z = r;
d = y;
delta0 = y’*r;

for i=1:maxiter
tt = K’*(K*d) + alpha*(L’*(L*d)); % A*z
v = d - V*(RA11\(RA11’\(V’*tt)));
w = K’*(K*v) + alpha*(L’*(L*v)); % A*v
warning off
f = RL\(RL’\w);



A.4 Semi Definite
&a+1&

117

warning on
g = f - V2*(RG\(RG’\(V2’*w))) - L0*(L0’*f);
tau = delta0 / (z’*g);
x = x + tau*v;
X(:,i) = x; % Store solution
r = r - tau*w;
y = y - tau*g;
delta1= r’*y;
beta = delta1 / delta0;
delta0 = delta1;
z = r + beta*z;
d = y + beta*d;

% Store norm, if required
if nargout > 1, rho(i) = norm(r); end
if nargout > 2, eta(i) = norm(u); end
flopc(i) = flops;

% Print trace information
if trace

disp([’Iteration ’, num2str(i), ’ in progress’])
if i > 1
disp(sprintf(’Done in %3.1f minutes’, ...

toc/60*(maxiter - i)));
end
tic

end
end



118 Matlab Code

A.5 Wavelet Schur complement

A.5.1 schurcgwavelet

Purpose Schur complement conjugate gradient method for ill-posed prob-
lems. Subspace splitting with wavelets.

Synopsis [X, rho, eta, flopc] = schurcg(K,D,k,alpha,L,b,maxiter � ,trace ! )
Description Performs maxiter iterations of the Schur complement conjugate

gradient method on the regularized system� ! + !{-0/,& + & � K ) ! + o
(A.3)

The subspace splitting is done by a Daubechies wavelet basis
with genus D and dimension k.
See also schurcg.

Code

function [X, rho, eta, flopc] = ...
schurcgwavelet(K,D,k,alpha,L,b,maxiter,trace)

% SCHURCGWAVELET Schur Complement Conjugated Gradients
% using a wavelet basis
% Assumes L to be invertible.
%
% [X, rho, eta, flopc] =
% SCHURCGWAVELET(K,D,k,alpha,L,b,maxiter {,trace})
%
% Solves a tikhonov regularized system of type
% (K’K+alpha*L’L)u = K’*b
% using Schur complement conjugated gradients -- see [1].
% The subspace projections are done with fast wavelet transforms
%
% Ole Moller Nielsen’s wavelet package is required:
% http://www.imm.dtu.dk/˜omni/wt.html
%
% Input arguments:
% K : Kernel matrix
% D : Wavelet Genus
% k : Subspace dimension
% alpha : Regularization parameter
% L : Seminorm matrix (SPD)
% Use [] for identity
% b : Right hand side vector
% iter : Maximum number of iterations
% trace : Print progress report after each iteration.
%
% Output argument:
% X : A matrix with all iter solutions stored as columns
% rho : Residual norms
% eta : Solution norms
% flopc : Flopcount after each iteration.
%



A.5 Wavelet Schur complement 119

% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods
% for Ill-Posed problems

% Last Revised: 2000.09.02

global WD SK N Vk;

if nargin < 8
trace = 0;

end
if nargout == 4

flops(0);
end

N = length(b);
SK = k; WD = D;

% Cholesky factorization of K’K and L’L
if ˜isempty(L)

KV = fwt(K’,D); LV = fwt(L’,D);
A11 = KV(1:k,:)*KV(1:k,:)’ + alpha*LV(1:k,:)*LV(1:k,:)’;
RL = triu(qr(L));

else
KV = fwt(K’,D);
A11 = KV(1:k,:)*KV(1:k,:)’ + alpha*eye(k);
RL = speye(N);

end
RA11 = chol(A11);

% We are working with normal equations
b = K’*b;

% Initialization
u = prolong(RA11\(RA11’\(restrict(b))));
if ˜isempty(L)

r = b - K’*(K*u) - alpha*(L’*(L*u));
y = RL\(RL\r);

else
r = b - K’*(K*u) - alpha*u;
y = r;

end

d = r;
z = y;
delta0 = y’*r;
X = [];

for i=1:maxiter
if ˜isempty(L)

tt = K’*(K*z) + alpha*(L’*(L*z)); % A*z
else

tt = K’*(K*z) + alpha*z; % A*z
end
v = z - prolong(RA11\(RA11’\(restrict(tt))));
if ˜isempty(L)



120 Matlab Code

w = K’*(K*v) + alpha*(L’*(L*v)); % A*v
g = RL\(RL’\w);

else
w = K’*(K*v) + alpha*v; % A*v
g = w;

end
tau = delta0 / (d’*g);
u = u + tau*v;
X(:,i) = u; % Store solution
r = r - tau*w;
y = y - tau*g;
delta1= r’*y;
beta = delta1 / delta0;
delta0 = delta1;
z = y + beta*z;
d = r + beta*d;

% Store iteration data, if required
if nargin > 1, rho(i) = norm(r); end
if nargin > 2, eta(i) = norm(u); end
flopc(i) = flops;

end

function wo = restrict(wi)
global SK WD;
wo = fwt(wi,WD);
wo = wo(1:SK);

function o = prolong(w)
global WD N SK;
o = zeros(N,1);
o(1:SK) = w;
o = ifwt(o,WD);

A.6 2-D Schur Complement

A.6.1 schurcg2d

Purpose Schur complement conjugate gradient method for ill-posed prob-
lems with Kronecker product kernels.

Synopsis [X, rho, eta, flopc] =
schurcg2d(K1,K2,V1,V2,alpha,L1,L2,B,novev,maxiter)

Description Performs maxiter iterations of the Schur complement conjugate
gradient method on the regularized system� ! + !¦-u/1& + & � ZS[ O � K �2) ! + Z¶[ O �&% ��A (A.4)

where
! ) ! � U ! L , G ) G � U G L , and

& ) & � U & L . The al-
gorithms uses matrix-matrix products according to the algebraic
rules of Kronecker products. The parameter novec tells the ap-
proximate

� x ��´� with a Kronecker product or not.



A.6 2-D Schur Complement 121

See also schurcg.

Code

function [X, rho, eta, flopc] = ...
schurcg2d(K1,K2,V1,V2,alpha,L1,L2,B,maxiter,novec,trace)

% SCHURCG2D Schur Complement Conjugated Gradients on
% Kronecker product problem
% Assumes L to be invertible.
%
% [X, rho, eta, flopc] =
% schurcg2d(K1,K2,V1,V2,alpha,L1,L2,b,maxiter {,trace})
%
% Solves a tikhonov regularized system of type
% (K’K+L’L)u = K’*b
% using schur complement conjugated gradients -- see [1].
%
% Input arguments:
% K1 : Kernel matrix
% K2 : Kernel matrix
% V1 : Basis for coarse subspace
% V2 : Basis for coarse subspace
% alpha : Regularization parameter
% L1 : Seminorm matrix
% L2 : Seminorm matrix
% B : Right hand side matrix
% iter : Maximum number of iterations
% novec : Use only matrix approximation
% trace : (Optional) Print information during calculations
%
% Output argument:
% X : A matrix with all iter solutions stored as columns
% rho : Residual norms
% eta : Solution norms
% flopc : Flop counts
%
% References:
% [1] Michael Jacobsen: Two-Grid Iterative Methods
% for Ill-Posed problems

% Last Revised: 2000.09.02

if nargout == 4
flops(0);

end
if nargin < 11

trace = 0;
end

SV1 = size(V1,2); SV2 = size(V2,2);
SK1 = size(K1,2); SK2 = size(K2,2);

% Cholesky factorization of K’K and L’L
KV1 = K1*V1; KV2 = K2*V2;
LV1 = L1*V1; LV2 = L2*V2;
if ˜novec



122 Matlab Code

A11 = kron(KV1’*KV1,KV2’*KV2) + ...
alpha*kron(LV1’*LV1,LV2’*LV2);

RA11 = chol(A11);
else

A1r = chol(KV1’*KV1);
A2r = chol(KV2’*KV2);

end
RL1 = qr(L1); RL2 = qr(L2);

% A11 is SPD (at least theoreticaly)
if trace

disp(’A11 done’)
end

% We are working with normal equations
B = K2’*B*K1;

% Initialization
if novec

U = V2’*B*V1;
U = (A2r\(A2r’\U))/A1r/A1r’;
U = V2*U*V1’;

else
U = reshape(V2’*B*V1,SV1*SV2,1); % To vector
U = reshape(RA11\(RA11’\U),SV2,SV1); % To matrix
U = V2*U*V1’;

end
R = B - K2’*K2*U*K1’*K1 - alpha*L2’*L2*U*L1’*L1;

Y = R;
D = R;
Z = Y;

delta0 = Y(:)’*R(:);
X = zeros(SK2,SK1,maxiter);

for i=1:maxiter
TT = K2’*K2*Z*K1’*K1 + alpha*L2’*L2*Z*L1’*L1;
if novec
TT2 = V2’*TT*V1;
TT3 = (A2r\(A2r’\TT2))/A1r/A1r’;

else
TT2 = reshape(V2’*TT*V1,SV2*SV1,1);
TT3 = reshape(RA11\(RA11’\(TT2)),SV1,SV2);

end
V = Z - V2*TT3*V1’;

W = K2’*K2*V*K1’*K1 + alpha*L2’*L2*V*L1’*L1;
G = W;

tau = delta0 / (D(:)’*G(:));
U = U + tau*V;
X(:,:,i) = U; % Store solution
R = R - tau*W; % Update residual
Y = Y - tau*G;
delta1= R(:)’*Y(:);



A.6 2-D Schur Complement 123

beta = delta1 / delta0;
delta0 = delta1;
Z = Y + beta*Z;
D = R + beta*D;

% Store information, if required
if nargout > 1, rho(i) = norm(R,’fro’); end
if nargout > 2, eta(i) = norm(U,’fro’); end
flopc(i) = flops;

% Print trace information
if trace

disp([’Iteration ’, num2str(i), ’ in progress’])
if i > 1
disp(sprintf(’Done in %3.1f minutes’, ...

toc/60*(maxiter - i)));
end
tic

end
end



124 Matlab Code



A P P E N D I X B

Proofs

This part of the appendix contains a proof of an equality. It is ommited from
the main text because it was irrelevant in the overall context, but included here
because the equality is not obvious.

B.1 Jacobi Preconditioning

We have a matrix Ç p�r 9=sk
 and it’s thick SVDÇ ) D £ E; 9 x 
 > 
 ¤ G +
where

E
and

G
equals those of the usual thin SVD. The first columns of the

thick SVD
D

equals the columns the usual thin SVD. But the thick SVD en-
larges

D
with columns spanning the first columns orthogonal complement.

The result is that
D

is square and orthogonal.
The objective is to prove� Ç + Ç -0/18 
 � x � Ç + ) Ç + � ÇÈÇ + -0/,8 9 � x � (B.1)

The first step inserts the thick SVD of Ç at all occurances in the left hand side
of (B.1)Õ G ðùE ; 
 > 9 x 
ûò D + D £ E; 9 x 
 > 
û¤ G + -0/,8 
 Ø x � G ðùE ; 
 > 9 x 
uò D +)

� G�E L G + -0/,8 
 � x � G ð E ; 
 > 9 x 
 ò D +)
� G�E L G + -0/,G 8Q
`G + � x � G$ð E ; 
 > 9 x 
 òÍD +



126 Proofs

Secondly we move all
G

s out of
� �Q�Ã��� x �G � E L -0/18Q
 � x � G�+,G$ð E ; 
 > 9 x 
 ò�D�+)G � E L -0/,8Q
 � x � ð E ; 9 x 
 > 
 òÍD�+

Now we multiply the two terms in the middleG(' � E L -0/,8Ã
 � x � E ; 
 > 9 x 
*) D +
and because diagonal matrices are commutable with respect to multiplication,
i.e
E � E L ) E L E �

, we are able to commute the terms
� �Ã�Q�±� x �

and
E

and write
the block matrix as the sum of a matrix multiplication (note the lower right
block) G(' E � E L -u/18Q
 � x � ; 9 x 
 > 
*) D�+)G$ð E ; 
 > 9 x 
 ò £ � E L -0/,8 
 � x � ; 
 > 9 x 
; 9 x 
 > 
 ¸ ã /,8 9 x 
 ¤ D�+
The inverse of a block diagonal matrix equals the matrix of the inverse blocksG ðùE ; 
 > 9 x 
dò £ E L -0/,8Ã
 ; 
 > 9 x 
; 9 x 
 > 
 /,8Q9 x 
 ¤ x � D +)G ð�E ; 
 > 9 x 
 ò Õ £ E L ; 
 > 9 x 
; 9 x 
 > 
 ; 9 x 
 ¤ -0/,8Q9 Ø x � D�+)G ð E ; 
 > 9 x 
ûò D�+,D Õ £ E L ; 
 > 9 x 
; 9 x 
 > 
 ; 9 x 
t¤ -0/18 9 Ø x � D +1D�D +)G$ð E ; 
 > 9 x 
 ò®D +wÕkD £ E L ; 
 > 9 x 
; 9 x 
 > 
 ; 9 x 
 ¤ D +�-u/18:9 Ø x � (B.2)

A computation of ÇÈÇ + using the thick SVD revealsÇÄÇ + ) D £ E; 9 x 
 > 
 ¤ G + G À E ; 
 > 9 x 
ÃÄ D +) D £ E; 9 x 
 > 
d¤ À E ; 
 > 9 x 
 Ä D +) D £ E ; 
 > 9 x 
; 9 x 
 > 
 ; 9 x 
t¤ D +



B.1 Jacobi Preconditioning 127

which combined with (B.2) yields the desired resultG$ð E ; 
 > 9 x 
 òÍD�+uÕ�D £ E L ; 
 > 9 x 
; 9 x 
 > 
 ; 9 x 
 > 9 x 
d¤ D�+ -u/18:9 Ø x �)Ç + � ÇÈÇ +�-u8 9 � x � %



128 Proofs



Bibliography

[1] O. AXELSSON, Iterative Solution Methods, Cambridge University Press,
1994.

[2] R. BARRET ET AL., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[3] W. L. BRIGGS, A Multigrid Tutorial, SIAM, Philadelphia, 1987.

[4] I. DAUBECHIES, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[5] J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia,
1997.

[6] M. FEDI AND A. RAPOLLA, 3-D inversion of gravity and magnetic data with
depth resolution, Geophysics, 64 (1999), pp. 452–460.

[7] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, The Johns Hop-
kins University Press, Baltimore, Maryland, third ed., 1996.

[8] G. H. GOLUB AND D. P. O’LEARY, History of the conjugate gradient and
Lanczos methods, SIAM Review, 31 (1989), pp. 50–102.

[9] A. GREENBAUM, The Lanczos and conjugate gradient algorithms in finite preci-
sion arithmetic, in Proceedings of the Cornelius Lanczos International Cen-
tenary Conference, SIAM, 1994, pp. 49–60.

[10] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Computer
Science and Applied Mathematics, Academic Press, New York, 1981.

[11] M. HANKE, Conjugate Gradient Type Methods for Ill-Posed Problems, Pitman
Research Notes in Mathematics Series, Longman Group Limited, Harlow,
England, 1995.

[12] M. HANKE AND C. R. VOGEL, Two-level preconditioners for regularized in-
verse problems II: Implementation and numerical results. Submitted to SIAM
Journal on Scientific Computing.



130 Proofs

[13] , Two-level preconditioners for regularized inverse problems I: Theory, Nu-
merische Mathematik, 83 (1999), pp. 385–402.

[14] P. C. HANSEN, Deconvolution and regularization with Toeplitz matrices. Sub-
mitted to Numerical Algorithms.

[15] , The discrete Picard condition for discrete ill-posed problems, BIT, (1990),
pp. 658–672.

[16] , Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia,
1998.

[17] , Regularization tools version 3.0 for Matlab 5.2, Numerical Algorithms,
20 (1999), pp. 195–196.

[18] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving
linear systems, Journal of Research of the National Bureau of Standards, 49
(1952), pp. 409–436.

[19] M. JACOBSEN, J. M. RASMUSSEN, AND H. SØRENSEN, Image-restoration
using PP-TSVD, 1998.

[20] J. T. KING, Multilevel algorithms for ill-posed problems, Numerische Mathe-
matik, 61 (1992), pp. 311–334.

[21] C. V. LOAN, Computational Frameworks for the Fast Fourier Transform, Fron-
tiers in Applied Mathematics, SIAM, Philadelphia, 1992.

[22] A. NEUMAIER, Solving ill-conditioned and singular linear systems: A tutorial
on regularization, SIAM Review, 40 (1998), pp. 636–666.

[23] O. M. NIELSEN, Wavelets in Scientific Computing, PhD thesis, Technical
University of Denmark, July 1998.

[24] C. C. PAIGE AND M. A. SAUNDERS, LSQR: Sparse linear equations and least
squares problems, ACM Transactions on Mathematical Software, 8 (1982),
pp. 195–209.

[25] B. N. PARLETT, The Symmetric Eigenvalue Problem, Classics in applied
mathematics, SIAM, Philadelphia, 1998.

[26] M. PEDERSEN, Functional Analysis in Applied Mathematics and Engineering,
Chapman & Hall/CRC, Boca Ranton, Florida, 1999.

[27] D. L. PHILLIPS, A technique for the numerical solution of certain integral equa-
tions of the first kind, Journal of ACM, 9 (1962), pp. 84–97.

[28] A. RIEDER, A wavelet multilevel method for ill-posed problems stabilized by
Tikhonov regularization, Numerische Mathematik, 75 (1997), pp. 501–522.



B.1 Jacobi Preconditioning 131

[29] K. L. RILEY, Two-Level Preconditioners for Regularized Ill-Posed Problems,
PhD thesis, Montana State University – Bozeman, July 1999.

[30] Y.-H. D. ROECK, Sparse linear algebra and geophysical migration, Tech. Rep.
RR-3876, INRIA Rennes, February 2000.

[31] J. R. SHEWCHUK, An introduction to the conjugate gradient method with-
out the agonizing pain. http://www.cs.cmu.edu/ + quake-papers/, August
1994.

[32] B. SMITH, P. BJØRSTAD, AND W. GROPP, Domain Decomposition: Paral-
lel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996.

[33] A. N. TIKHONOV AND V. Y. ARSENIN, Solutions of Ill-Posed Problems,
Scripta Series in Mathematics, John Wiley & Sons, New York, 1977.

[34] L. N. TREFETHEN AND D. B. III, Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

[35] C. R. VOGEL, Negative results for multilevel preconditioners in image deblur-
ring, in Scale-Space Theories in Computer Vision, M. Nielsen et al., eds.,
Springer, 1999.


